Instruction Manual
PZ0502 Trinocular Parallel Zoom Stereo Microscope.pdf
Quick Overview
Infinite. Total Magnification: 6.3-80X. 10X Adjustable Eyepiece. 1X Infinity Plan Apochromatic Objective. Standard Coupler: 1X. Zoom Ratio: 1:12.5. Eye Tube Angle: 5-45°. Eyepiece Field of View: Dia. 22mm. Post Stand. Illumination Type: LED Transmitted Light. Input Voltage: AC 100-240V 50/60Hz.
PZ0502 Trinocular Parallel Zoom Stereo Microscope.pdf
Quick Overview
Infinite. Total Magnification: 6.3-80X. 10X Adjustable Eyepiece. 1X Infinity Plan Apochromatic Objective. Standard Coupler: 1X. Zoom Ratio: 1:12.5. Eye Tube Angle: 5-45°. Eyepiece Field of View: Dia. 22mm. Post Stand. Illumination Type: LED Transmitted Light. Input Voltage: AC 100-240V 50/60Hz.
PZ05020132 Trinocular Parallel Zoom Stereo Microscope
Optical System Specifications
Optical System | Infinite |
System Optical Magnification | 6.3-80X |
Trinocular Optical Magnification | 0.63-8X |
Total Magnification | 6.3-80X |
Standard Eyepiece | 10X Adjustable Eyepiece |
Standard Objective | 1X Infinity Plan Apochromatic Objective |
Standard Coupler | 1X |
System Field of View | 2.75-34.92mm |
System Working Distance | 80mm |
Stereo Trinocular Head
5-45° Stereo Trinocular Head | |
Eye Tube Optical System | Infinite |
Eye Tube Type | For Stereo Microscope |
Eye Tube Adjustment Mode | Siedentopf |
Eye Tube Angle | 5-45° |
Erect/Inverted Image | Erect image |
Eye Tube Rotatable | Fixed |
Interpupillary Adjustment | 50-76mm |
Eye Tube Inner Diameter | Dia. 30mm |
Eye Tube Fixing Mode | Locking Screw |
Eye Tube Size for Scope Body/Carrier | Dia. 50mm |
Image Port Switch Mode | 0/100 Switch Trinocular |
Surface Treatment | Plastic Spray Coating |
Material | Plastic |
Color | White |
Net Weight | 2.0kg (4.41lbs) |
Eyepiece
10X Adjustable Eyepiece (Pair Dia. 30/FN22) | |
Eyepiece Type | Adjustable Eyepiece |
Eyepiece Optical Magnification | 10X |
Plan Eyepiece | Plan Eyepiece |
Eyepiece Size for Eye Tube | Dia. 30mm |
Eyepiece Field of View | Dia. 22mm |
Eyepoint Type | High Eyepoint Eyepiece |
Eyepiece Diopter Correction | ±5° |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.23kg (0.51lbs) |
Stereo Objective
1X Infinity Plan Apochromatic Objective | |
Objective Optical System | Infinite |
Objective Optical Magnification | 1X |
Objective Type | Plan Apochromatic Objective |
Objective Working Distance | 80mm |
Objective Screw Thread | M54x1mm |
Objective Outer Diameter | Dia. 68mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.54kg (1.19lbs) |
Applied Field | For PZ0502 Parallel Zoom Stereo Microscope |
Parallel Zoom Body
6.3-80X Parallel Zoom Body | |
Body Optical System | Infinite |
Body Magnification | 0.63-8X |
Zoom Range | 0.63-8X |
Zoom Ratio | 1:12.5 |
Zoom Operating Mode | With Two Horizontal Knobs |
Body Mount Type for Eye Tube | Fastening Screw |
Body Mounting Size for Eye Tube | Dia. 50mm |
Objective Screw Thread | M54x1mm |
Aperture Diaphragm | Aperture Diaphragm Adjustable |
Aperture Diaphragm Mounting Position | Optical Pathway |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 1.30kg (2.866lbs) |
Post Stand
LED Illuminated Post Stand | |
Stand Type | Post Stand |
Vertical Post Height | 220mm |
Vertical Post Diameter | Dia. 32mm |
Base Type | Illumination Base |
Base Shape | Fan-Shape |
Base Dimensions | 356x240x55mm |
Illumination Type | LED Transmitted Light |
Bottom Illumination Type | LED |
Bulb Color Temperature | 3000-5600K |
Input Voltage | AC 100-240V 50/60Hz |
Power Cord Connector Type | USA 3 Pins |
Power Cable Length | 1.8m |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 2.80kg (6.17lbs) |
Dimensions | 356x240x300mm (14.016x9.449x11.811 in. ) |
Coupler/C-mount Adapter
1X Coupler | |
Coupler Mount Type for Trinocular | Fastening Screw |
Coupler Mount Size for Trinocular | Dia. 42mm |
Adjustable Coupler | Adjustable |
Coupler for Microscope Type | Stereo Compatible |
Coupler Magnification | 1X |
C/CS-Mount Coupler | C-Mount |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.20kg (0.44lbs) |
Applied Field | For PZ0502 Parallel Zoom Stereo Microscope |
Mechanical Parts
32mm Through Hole Fine Focus Rack | |
Focus Mode | Manual |
Coarse/Fine Focus Type | Coaxial Coarse/Fine Focus |
Focus Distance | 45mm |
Fine Focus Travel Distance | Same as Focus Distance |
Coarse Focus Distance per Rotation | 36mm |
Fine Focus Distance per Rotation | 0.2mm |
Fine Focus Minimum Scale | 2μm |
Focus Limited | Limited |
Focusing Knob Tightness Adjustable | Tightness Adjustable |
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 2.34kg (5.16lbs) |
Other Parameters
Surface Treatment | Spray Paint |
Material | Metal |
Color | White |
Net Weight | 9.30kg (20.50lbs) |
Dimensions | 36x24x50cm (14.173x9.449x19.685 in. ) |
Series
PZ0502 | PZ05020132 |
Technical Info
Instructions
Stereo MicroscopeClose Λ
Stereo microscopes are also known as the anatomical microscopes, or dissecting microscopes. Many people would refer to stereo microscope as Stereo, and the Continuous Zoom Microscope as Zoom. Stereo microscopes are a kind of binocular microscope that observes an object with both eyes from different angles, thereby causing a stereoscopic effect. The stereo microscope adopts two independent optical paths, and the left and right beams in the binocular tube have a certain angle, generally 12°~15°. The objects are observed from different angles of the two optical paths, causing a three-dimensional effect on the eyes, and therefore a stereo microscope is a true 3D microscope. Compared with other compound microscopes, stereo microscopes belong to the low power optical microscope. The field of view of stereo microscopes has a large diameter, its magnification is generally below 200X for optical magnification. When the magnification is greater than 40X, the stereoscopic effect of the image will be relatively poor. Therefore, the advantage of the stereo microscope is not that its magnification is large, but that its working distance is long and the depth of field is large, which is particularly suitable for observing objects with a high degree of three-dimensional features. For compound microscope with a single optical path, what we see is only a flat image. Although most compound microscopes have two eyepieces, what we actually see is one and the same image, and this is just to facilitate the observation habits of our two eyes. The stereo microscope has two optical paths (two objective lenses or one common objective lens), and only the three-dimensional sense produced under observation of the two optical paths can make people judge the three-dimensional spatial position of the observed object, which can generate a sense of distance under the microscope. Therefore, only stereo microscope can be used for operation under the microscope which is very suitable for surgery, dissection, industrial welding, assembly, precision instrument repair and so on. The stereo microscope can be equipped with a wide range of accessories. It can be combined with various digital cameras and photographic interfaces, microscope cameras, eyepiece cameras and image analysis software to form a digital imaging system. It can be connected to a computer for analysis and processing, and its lighting system also has different options for illumination, such as reflected light, transmitted light, etc. Stereoscopic microscopes are widely used in various fields, such as biology, medicine, agriculture, forestry, marine life, and other various departments. They are especially used in industry, for macroscopic surface observation, analysis, and microscopic operations. Stereoscopic microscopes were invented by American instrument engineer Horatio S. Greenough in the 1890s, manufactured by Carl Zeiss Company of Germany, and are widely used in scientific research, archaeological exploration, industrial quality control, biopharmaceuticals, and more. Stereo Microscope Quick Operation Steps Step 1 In the working position, place the microscope on the workbench after installation. Connect the power source, and turn on the light source. Place an observation sample (also known as specimen) such as a coin etc. under the microscope or on the base. Adjust the focus knob of the stand by visually measuring the height, or based on the working distance parameters of the objective lens used. Step 2 Adjust the zoom knob of the microscope to the lowest magnification. Find the approximate image by adjusting the focus knob. Find a certain feature point of the sample in approximately the center position. Align the feature point of the specimen and gradually adjust to a large magnification. Adjust the lift set of the microscope to find the focal plane of the highest magnification. During the adjustment process, use a sample with obvious feature points (such as a coin) to compare the sharpness of the image. Turn the zoom knob again to the lowest magnification. It is possible that the image may be out of focus. At this time, do not adjust the focusing knob. Simply adjust the diopters on the two eyepieces to accommodate differences in eye observations (diopter varies from person to person). Adjust the viewing distance of the eyepiece to achieve a comfortable position. At this point, the microscope is already parfocal, i.e., when the microscope is changed from high power to low power, the entire image is in the focal plane. To observe the same sample, it is not necessary to adjust other parts of the microscope. Only the zoom knob is needed to zoom in on the specimen for observation. Step 3 Adjust the light source, including the brightness and angle of incidence to get the best image or see additional details. Step 4 Adjust any other necessary equipment such as the photographic eyepieces, cameras, etc., to show the image on the display or to find the sharpest image. When using binocular observation and the left and right images or sharpness is not the same, first adjust the diopter adjustment on the eyepiece. This adjusts the parallax of the two eyes, so that the image of the two eyes are consistent. It is normal to feel viewing fatigue when using a microscope for a long time. Take a break before working again to adapt your eyes to using the microscope. If the microscope is used for too long, or if there is a problem inside the microscope due to large temperature difference, vibration, etc., please contact your dealer or our service staff on the BoliOptics website. |
InfiniteClose Λ
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Trinocular Optical MagnificationClose Λ
When the instrument is conducting electronic image magnification and observation through a camera or the like, the optically magnified portion may not be the optical path that passes through the "eyepiece-objective lens" of the instrument, at this time, the calculation method of the magnification is related to the third-party photo eyepiece passed. The trinocular optical magnification is equal to the multiplier product of objective lens (objective lens set) and the photo eyepiece Trinocular optical magnification = objective lens X photo eyepiece |
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
System Field of ViewClose Λ
Field of View, is also called FOV. The field of view, or FOV, refers to the size of the object plane (i.e., the plane of the point of the observed object perpendicular to the optical axis), or of its conjugate plane (i.e., object to primary image distance), represented by a line value. System field of view is the size of the actual diameter of the image of the terminal display device of the instrument, such as the size of the image in the eyepiece or in the display. Field of view number refers to the diameter of the field diaphragm of the objective lens, or the diameter of the image plane formed by the field diaphragm. Field of view number of objective lens = field of view number of eyepiece / (objective magnification / mechanical tube length) Large field of view makes it easy to observe the full view and more range of the observed object, but the field of view (FOV) is inversely proportional to the magnification and inversely proportional to the resolution, that is, the larger the field of view, the smaller the magnification, and also the lower the resolution of the object to be observed. There are usually two ways to increase the field of view, one is to replace with an objective lens of a smaller multiple, or to replace with an eyepiece of a smaller multiple. |
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object. When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions. In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller. Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance. When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens. |
SiedentopfClose Λ
For siedentopf eyetube, when changing the interpupillary distance, it requires two hands pushing or pulling the two eyetubes left and right simultaneously, and the two eyepiece tubes or eyetubes will change their position at the same time. |
Eye Tube AngleClose Λ
Usually the Microscope Eyetube is 45°, some is 30°, Tiltable Eyetube Angle design of a microscope is also known as the ergonomics microscope. 0-30° or 0-45° is an ergonomic design. When the mechanical tube length / focal length of the tube of the microscope is relatively big, the microscope is relatively high, and the user's height or the seat of the work desk is not suitable, long-term use of microscope may cause sitting discomfort. Eyepiece tube with variable angle can freely adjust the angle without lowering the head. Especially when it is close to 0 degree and the human eye is close to horizontal viewing, long-time or long-term use can avoid fatigue damage to the cervical vertebra. |
Erect/Inverted ImageClose Λ
After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs. When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design. When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera. |
Interpupillary AdjustmentClose Λ
The distance between the two pupils of the human eye is different. When the image of exit pupil of the two eyepieces of the microscope are not aligned with the entry pupil of the eye, the two eyes will see different images, which can cause discomfort. Adjust the distance between the two eyepieces, to accommodate or adapt to the pupil distance of the observer's eyes. The adjustment range is generally between 55-75mm. |
Image Port Switch ModeClose Λ
The third eyepiece splitting in the trinocular microscope is to borrow one of the two sets of eyepiece optical paths as the photographic light path. The beam split prism or beam splitter can reflect part of the image light to the eyepiece, and part passes through to the third eyepiece photographic light path, such a trinocular microscope is called trinocular simultaneous imaging microscope, or true-trinocular. The beam split prism or beam splitter of the trinocular simultaneous imaging microscope or true-trinocular often has different splitting modes, such as 20/80 and 50/50, etc. Usually, the former is the luminous flux ratio of the eyepiece optical path, and the latter is the luminous flux ratio of the photographic optical path. The advantage of true-trinocular is that, the real three optical paths can be imaged at the same time, and are not affected by the simultaneous use of the eyepiece observation and the photographic optical path (display). The disadvantage is that, because of the reason of the splitting, the image light of the photography is only a part. In theory, the image effect will be affected, and the effect is more obvious in the binocular eyepiece observation. If viewed closely, one will find that the eyepiece of the light path is relatively dark. However, in the current optical design and materials, the impact on the actual work is not very big, especially in the observation of low magnification objective lens, it has basically no effect at all, and therefore used by many people. |
Adjustable EyepieceClose Λ
The adjustable eyepiece is between the lens of the eyepiece and the focal plane, with distance adjustable device. For most people, their two eyes, the left and the right, have different vision. For adjustable eyepieces, the eyepoint height of the eyepiece can be adjusted to compensate for the difference in vision between the two eyes, making the image in the two eyes clear and consistent. The range of adjustment of the general eyepiece is that the diopter is plus or minus 5 degrees, and the maximum difference between the two eyepieces can reach 10 degrees. Before use, it is generally necessary to adjust both eyepieces to the initial position where the scale is displayed as 0, which is used as a baseline to facilitate up and down adjustment. The reticle position of the eyepiece is generally 10mm below the fixed position of the eyepiece tube. Because the vision of each person is different, some people may not be able to see the reticle clearly. For adjustable eyepiece, the height of the reticle position can be adjusted to make the reticle and the observed object clear at the same time, this is the advantage of adjustable eyepiece that mounts the diopter adjustment on the eyepiece tube compared with non-adjustable eyepiece. When non-adjustable eyepiece is equipped with a reticle, if the diopter is adjusted, the reticle will rotate accordingly, thereby affecting the position of the measurement. For adjustable eyepiece, when its diopter is adjusted, its reticle does not rotate. |
Eyepiece Optical MagnificationClose Λ
Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece. The standard configuration of a general microscope is a 10X eyepiece. Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X. As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification. |
Eyepiece Field of ViewClose Λ
The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm. The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect. |
Eyepoint TypeClose Λ
Eye point refers to the axial distance between the upper end of the metal frame of the eyepiece and the exit of pupil. The exit of pupil distance of high eyepoint eyepiece is farther than that of the eye lens of the ordinary eyepiece. When this distance is greater than or equal to 18mm, it is a high eyepoint eyepiece. When observing, one does not need to be too close to the eyepiece lens, making it comfort to observe, and it can also be viewed with glasses. Generally, there is a glasses logo on the eyepiece, indicating that it is a high eyepoint eyepiece. |
Objective Optical MagnificationClose Λ
The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance. Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens. Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm) Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object. The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance. |
Objective TypeClose Λ
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line). The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories. Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope. Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected. Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect. Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line). Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective. |
Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed. Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view. High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object. The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution. |
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different. In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably. One is the British system: RMS type objective thread: 4/5in X 1/36in, One is metric: M25 X 0.75mm thread. |
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope. Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process. The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be. |
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4. Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly. |
With Two Horizontal KnobsClose Λ
When microscope body changes the magnification, it is realized by adjusting the horizontally placed zoom knob. Because the knob is relatively small, it is therefore easier to zoom and the image is stable. For most of the dual stereo microscopes, magnification is realized by adjusting the zoom drum or nosepiece below. When the nosepiece is relatively big, frequent operation is more laborious. Magnifying while observing, the microscope may shake, thereby causing eye discomfort for observation. Using zoom drum or nosepiece type microscope, if there is a ring light under the microscope, the ring light carries the wire, and when magnification conversion is often required, the ring light and the wire will swing along with the magnification, which makes the operation inconvenient. This situation will not occur to zoom with two horizontal knobs. |
Aperture DiaphragmClose Λ
The diaphragm that determines the image plane necessary for imaging through the objective lens is called the aperture diaphragm. All irises of the traditional microscope are aperture diaphragm. The function of aperture diaphragm is mainly to limit the size of the imaging beam, change the luminous flux, thereby improving the imaging quality. The size of the aperture diaphragm is usually variable, and it is also called iris diaphragm. When the aperture diaphragm lock is too small and the luminous flux of the imaging beam is insufficient, the fraction ratio of the objective lens is low, the imaging will become dark; however, when the aperture diaphragm is too large, there will be strong light in the field of view, and even though viewed from the eyepiece, it may have high resolution, the image on the display will be overexposed. After replacing the objective lens, the aperture diaphragm should also be adjusted appropriately, rather than adjusting the brightness of the light. The aperture diaphragm of the transmitted light is generally mounted on the microscope base. The aperture diaphragm of the biological microscope is mounted on the condenser device. On the other hand, the aperture diaphragm of compound microscopes, such as large upright metallurgical or fluorescence microscopes, is generally mounted on the in the coaxial reflection illuminator. In the use of the aperture diaphragm, it is often necessary to adjust the center of the diaphragm. Generally, it is adjusted together with the condenser. Please refer to the adjustment method of the condenser. |
Post StandClose Λ
Post stand generally has relatively tall post. When the focus is adjusted, the focusing mechanism can slide up and down the post, the microscope is thus placed in an approximately focused position, and then the focusing mechanism makes fine and accurate adjustment. This kind of stand can move quickly, and is suitable for viewing objects with a higher height and bigger volume. After the microscope is mounted, the microscope imaging center needs to be aligned with the center of the platen. The focusing mechanism button on the post must be tightened to lock the guard ring device, and the microscope should be prevented from loosening and shaking when working. When it is necessary to adjust the height, hold the microscope and the focusing mechanism with one hand, then release the knob, adjust it to the proper position, lock the knob, then top the guard ring to the lower position of the focusing mechanism, and lock it tight. In particular, avoid accidental dropping of the microscope due to gravity, thereby damaging the microscope and the objects below. |
Illumination BaseClose Λ
Illumination base is a modular light source component, suitable for microscope stand base that has no light source of itself, and it is usually dedicated components supporting some stands. Illumination base typically includes at least one bottom lighting, and there are also illumination base that includes the circuit portion of the upper light source. |
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope. |
Adjustable CouplerClose Λ
On the coupler/C-mount-adapter, there is an adjustable device to adjust the focal length. |
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details. |
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification. Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification. For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm. The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece. Some adapters are designed without a lens, and their optical magnification is considered 1X. |
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount". |
Coaxial Coarse/Fine FocusClose Λ
Focus mechanism, the coarse / fine focus knobs are in a coaxial center position, they are connected together by a gear reduction mechanism, which can be coarse/ fine focus adjusted at any time during the entire stroke. Generally, the coarse focus diameter is relatively big, which is inside close to the body of the microscope, and the fine focus diameter is relatively small, which is outside of the body of the microscope. Coarse focus adjustment is used to quickly move to find the image, and the fine focus adjustment is used to finely adjust the clarity of the image. Generally, the minimum read value of the fine focus adjustment can be accurate to 1 micron, and single circle can reach a stroke of 0.1 mm. Mechanical fine focus plays a very important role in the accuracy of the microscope resolution. If the fine focus accuracy is not enough, or cannot be stabilized at the sharpest focusing position, the image will be out of focus and become blurred. The tightness of coarse focus is generally adjustable. Generally, on one side of the knob (usually on the right side), there is a textured knob on the inside of the coarse knob, which is tightened if rotated clockwise; and loosened if rotated counterclockwise. In the process of focusing, direct focusing should not be on the objective of high magnification; instead, find the object of low magnification first, and gradually adjust to high magnification. Usually, the coarse focus knob is rotated first, and when the objective lens is gradually lowered or the platform is gradually rising, find the object, and then adjust with the fine focus, until the object image in the field of view is clear. Generally, when changing from low magnification to high magnification objective, one only need to slightly adjust the fine focus knob to make the object image clear. During the process, the distance between the objective and the specimen should be observed from the side, to understand the critical value of the object distance between the lens and the specimen. When using a high magnification objective, since the distance between the objective and the specimen is very close, after the image is found, the coarse focus knob cannot generally be used, and the fine focus knob can only be used to avoid excessive distance of movement, damaging the objective and the slide or specimen. By using the characteristics of the fine focus, the height or thickness of the observed object can be roughly measured under the microscope, such as measuring the thickness of the cell or tissue, the thickness of the cover glass, and the thickness of small objects that cannot be measured by various conventional measuring instruments. Method of measurement: place the object to be measured at the center of the field of view of the stage. After the image is clearly focused, try to use the highest magnification objective as much as possible, and align the adapter of the top feature point of the object to be measured. After adjusting clear, record the position of scale of the fine focus knob. Then, move the objective down to the adapter of the lowest feature point of the object to be measured, and record the position of scale of the fine focus knob. Then, according to the above fine focus, record the number of rounds of movement, and based on the parameters of conversion of each round into stroke (see the microscope fine focus knob parameters), the number of rounds is converted into the total stroke, which is the height of the object to be measured. If it is repeated a few times for average, a more accurate measurement can be obtained. |
Focus LimitedClose Λ
Mostly, at the junction of the compound microscope platform and the body, there is a longitudinal limit mechanism. When the limit mechanism is locked, the platform is prevented from moving up and colliding with the microscope objective, thereby damaging the specimen or destroying the lens. On its first use, use one specimen, applying 100X or the highest magnification lens, carefully find the clearest image, then lock the axial limit mechanism down, the focus mechanism will remember this position. When the focus is adjusted again to reach this position in the future, it will not go up again, and the platform or specimen will not touch the lens. |
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body. Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen) In general, after long-time use, the knob will be loose, and adjustment is necessary. |
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Optical Data
Microscope Optical Data Sheet | ||||
P/N | Objective | Objective Working Distance | Eyepiece | |
BM05102222 (10X Dia. 22mm) | ||||
Magnification | Field of View(mm) | |||
PZ05024431 | 1X | 80mm | 6.3-80X | 2.75-34.92mm |
1. Magnification=Objective Optical Magnification * Body Magnification * Eyepiece Optical Magnification | ||||
2. Field of View=Eyepiece Field of View /(Objective Optical Magnification*Body Magnification) | ||||
3. The Darker background items are Standard items, the white background items are optional items. |
Video Microscope Optical Data Sheet | ||
P/N | Objective | Coupler |
PZ05026151 (1X) | ||
Magnification | ||
PZ05024431 | 1X | 0.63-8X |
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification |
Camera Image Sensor Specifications | |||
No. | Camera Image Sensor Size | Camera image Sensor Diagonal | |
(mm) | (inch) | ||
1 | 1/4 in. | 4mm | 0.157" |
2 | 1/3 in. | 6mm | 0.236" |
3 | 1/2.8 in. | 6.592mm | 0.260" |
4 | 1/2.86 in. | 6.592mm | 0.260" |
5 | 1/2.7 in. | 6.718mm | 0.264" |
6 | 1/2.5 in. | 7.182mm | 0.283" |
7 | 1/2.3 in. | 7.7mm | 0.303" |
8 | 1/2.33 in. | 7.7mm | 0.303" |
9 | 1/2 in. | 8mm | 0.315" |
10 | 1/1.9 in. | 8.933mm | 0.352" |
11 | 1/1.8 in. | 8.933mm | 0.352" |
12 | 1/1.7 in. | 9.5mm | 0.374" |
13 | 2/3 in. | 11mm | 0.433" |
14 | 1/1.2 in. | 12.778mm | 0.503" |
15 | 1 in. | 16mm | 0.629" |
16 | 1/1.1 in. | 17.475mm | 0.688" |
Digital Magnification Data Sheet | ||
Image Sensor Size | Image Sensor Diagonal size | Monitor |
Screen Size (24in) | ||
Digital Zoom Function | ||
1/3 in. | 6mm | 101.6 |
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size |
Microscope Optical and Digital Magnifications Data Sheet | ||||||||||
Objective | Coupler | Camera | Monitor | Video Microscope Optical Magnifications | Digital Zoom Function | Total Magnification | Field of View (mm) | |||
PN | Magnification | PN | Magnification | Image Sensor Size | Image Sensor Diagonal size | Screen Size | ||||
PZ05024431 | 1X | PZ05026151 | 1X | 1/3 in. | 6mm | 24in | 0.63-8X | 101.6 | 64.01-812.8X | 0.75-9.52mm |
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification | ||||||||||
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications |
Contains | |||||||||||||||||||||||||
Parts Including | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Desiccant Bag | 3 Bags | ||||||||||||||||||||||||
Product Instructions/Operation Manual | 1pc |
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 55.5x53x39cm (21.850x20.866x15.354″) |
Packaging Dimensions(2) | 44x35.6x39cm (17.323x14.016x15.354″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Expanded Polystyrene |
Gross Weight | 14.20kg (31.31lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Corrugated Carton |
Transportation Carton Dimensions(1) | 55.5x53x39cm (21.850x20.866x15.354″) |
Transportation Carton Dimensions(2) | 44x35.6x39cm (17.323x14.016x15.354″) |
Total Gross Weight of Transportation(kilogram) | 14.20 |
Total Gross Weight of Transportation(pound) | 31.31 |
Quantity of One Transportation Carton | 2pc |