0.225-1.875X LED Light 45° Video Zoom Body MZ37011113

In Stock

Log in for pricing

Write a Review
5 Years
  • 0.225-1.875X LED Light 45° Video Zoom Body MZ37011113
  • 0.225-1.875X LED Light 45° Video Zoom Body MZ37011113
  • 0.225-1.875X LED Light 45° Video Zoom Body MZ37011113
  • 0.225-1.875X LED Light 45° Video Zoom Body MZ37011113

Quick Overview
Infinite. Total Magnification: 0.225-1.875X. 0.75X Objective. Standard Coupler: 0.5X. Zoom Ratio: 1:8.3. Body Mounting Size for Stand: Dia. 39mm. Objective Converter Angle: 45°. LED Light. Light Adjustable. Input Voltage: AC 100-240V 50/60Hz.

MZ37011113 45° Video Zoom Body
Optical System Specifications
Optical SystemInfinite
System Optical Magnification0.225-1.875X
Total Magnification0.225-1.875X
Standard Objective0.75X Objective
Standard Coupler0.5X
System Working Distance83-136mm
Video Monocular Zoom Body
0.6-5X Video Zoom Body
Body Optical SystemInfinite
Body Magnification0.6-5X
Zoom Range0.6-5X
Zoom Ratio1:8.3
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 39mm
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 30mm
Surface TreatmentElectroplating Black
Net Weight0.22kg (0.49lbs)
Objective Angle Converter
45° Objective Angle Converter
Objective Converter Angle45°
Magnification of Objective Converter0.75X
Objective Converter Rotatable360°
Objective Converter Operating ModeManual
Objective Converter Working Distance83mm
Objective Converter Vertical/Oblique Working Distance83-136mm
Surface TreatmentElectroplating Black
Net Weight0.25kg (0.55lbs)
Ring Light
LED Ring Light with Zone Control
Light Source TypeLED Light
Ring I.D. Size Dia. 40mm
LED Quantity208
Power Supply AdjustableLight Adjustable
Light Zone Control4 Zones for 4 Sets of Combination
Power Box Panel Meter DisplayPointer Panel Meter/Scale
Power Box Cooling SystemHeat Sink
Power Box Dimensions110x60x32mm
Output Power8W
Input VoltageAC 100-240V 50/60Hz
Power Cord Connector TypeUSA 2 Pins
Power Cable Length1.3m
Net Weight0.40kg (0.88lbs)
Screw ModelM3x37mm
Applied FieldFor MZ3701 Series Video Zoom Body
Coupler/C-mount Adapter
0.5X Coupler
Coupler Mount Type for BodyFastening Screw
Coupler Mount Size for Body Dia. 30mm
Adjustable CouplerAdjustable
Coupler for Microscope TypeVideo Zoom Lens Compatible
Coupler Magnification0.5X
C/CS-Mount CouplerC-Mount
Surface TreatmentElectroplating Black
Net Weight0.13kg (0.29lbs)
Applied FieldFor MZ3701 Series Video Zoom Body
Other Parameters
Surface TreatmentSpray Paint
Net Weight1.00kg (2.205lbs)


Technical Info

InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object.
When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions.
In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller.

Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance.
When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens.
Video Monocular Zoom BodyClose Λ
Video monocular zoom body is a zoom body that has only one set of optical paths, and it is also the body of the video continuous zoom.
The upper end of the microscope body can be connected to the standard C-interface photo eyepiece, and then connected to the microscope camera; the lower end is the objective lens, and the objective lens of parallel structure is generally separated from the body, whereas the microscope body of finite structure is combined with the objective lens.
Some bodies of microscope have also a light source coaxial illumination device.
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope.
Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process.
The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
Objective Angle ConverterClose Λ
Objective angle converter can change the viewing direction of the optical axis of the objective, and it is possible to observe at a suitable angle of the object, such as 90 degrees, 45 degrees, and the like. After adding the angle viewer, the working distance of the original objective will be reduced accordingly.
Observing in the oblique direction is suitable for observing the surface of some objects with "height". For some special positions, it is much easier to see the whole picture. In the electronics industry, the solder joints and solder fillets of electronic components can be seen more clearly.
Ring LightClose Λ
Ring light is a kind of "shadowless lamp", which is illuminated from a 360-degree annular angle, and can observe the change of the edge and height of the object to be observed. It is very suitable for surface illumination of non-reflective objects, and is often used to observe and detect the edge of objects, surface structure, traces, etc. such as components on the printed circuit board, liquid crystal glass substrates, metal and non-metal surface dust, scratch damage, various kinds of particles, etc., and is also the most common way of illumination for stereo microscopes.

Circular fluorescent light bulb is a bulb of peripheral illumination with no direction, it requires a reflective bowl to converge the light beam onto the illuminated object below the microscope. The diameter of the tube and the design of the reflective bowl determine the distance and position of the beam convergence point. The LED ring light consists of different LED bulbs. By setting the angle of the bulb, all the illumination beams are concentrated at one focus, and the annular or loop fiber is mostly designed by the incident angle of the fiber exit port.

The central concentration range of the ring lamp usually needs to coincide with the focal length of the objective lens of the stereo microscope. The working distance of the 1X objective lens of stereo microscope is generally about 80-100mm, which is the focus convergence position of most of the ring lamps. Because the external light source itself has a certain height, therefore the concentration center range of the ring light source is generally between 45-65mm. If below 45mm, shadow starts to appear in the middle; if higher than 65mm, the light in the middle will gradually diverge, and the brightness will decrease. When a small objective lens (such as 0.75X/0.5X) is selected, the lighting effect can basically be achieved; but when an objective lens with larger magnification is used and the working distance is relatively small (for example, 2X), the illumination center of the ring lamp will be a "black center", the effect of lighting will be relatively poor.

Ring lights are usually stuck at the bottom of the nosepiece. Tighten the screws. In general, the electrical wires should be pulled to the back of the operating position, the switch or button should be placed on the side for easy operation.
Generally, the ring light needs to be stuck with a lens frame at the bottom of the nosepiece. On the objective frame, there is a card slot for screw fastening. There are also microscope nosepieces that contains a card slot position of its own, and does not need an objective frame.
Light AdjustableClose Λ
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low.
When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed.
In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter.

Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken.
If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position.
Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking.
Light Zone ControlClose Λ
LED is made into light zone for illumination, which allows the light to illuminate the observed object at different positions and angles, so as to better observe different details of the object. There is generally a difference between the incident direction and the incident angle. In the incident direction, there is a combination of different light zone illuminations.
When observing different heights, reflective objects, disordered flat texture scratches and dust, by changing the light zone for illumination, the effect of the detail display can be very obvious.
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope.
Adjustable CouplerClose Λ
On the coupler/C-mount-adapter, there is an adjustable device to adjust the focal length.
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details.
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification.

Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification.

For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm.
The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece.
Some adapters are designed without a lens, and their optical magnification is considered 1X.
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount".
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.


Optical Data


Video Microscope Optical Data Sheet
P/NObjective Coupler
MZ37016131  (0.5X)
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification

Parts Including
MZ37011101 0.6-5X Video Zoom Body
MZ370161310.5X Coupler
MZ3701495145° Objective Angle Converter
ML37241221LED Ring Light with Zone Control
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)32.5x26.5x13.5cm (12.795x10.433x5.315″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Gross Weight1.47kg (3.25lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)32.5x26.5x13.5cm (12.795x10.433x5.315″)
Total Gross Weight of Transportation(kilogram)1.47
Total Gross Weight of Transportation(pound)3.25
Quantity of One Transportation Carton1pc

Related Products

Customers Also Viewed