Instruction Manual
TM Series.pdf
Quick Overview
Finite. Total Magnification: 30X. 15X Eyepiece. 2X Objective. Eye Tube Angle: 60°. Eyepiece Field of View: Dia. 13mm. XY Stage Travel Distance: 2x2 in. Illumination Type: LED Dual Illuminated Light . Top Illumination: Oblique Top Light. Input Voltage: AC 100-240V 50/60Hz. 90o Broken Cross-hair.
TM Series.pdf
Quick Overview
Finite. Total Magnification: 30X. 15X Eyepiece. 2X Objective. Eye Tube Angle: 60°. Eyepiece Field of View: Dia. 13mm. XY Stage Travel Distance: 2x2 in. Illumination Type: LED Dual Illuminated Light . Top Illumination: Oblique Top Light. Input Voltage: AC 100-240V 50/60Hz. 90o Broken Cross-hair.
Mitutoyo-176-818-11A Measurement Microscope (Measuring Range: 50x50)
Optical System Specifications
| Optical System | Finite |
| System Optical Magnification | 30X |
| Total Magnification | 30X |
| Standard Eyepiece | 15X Eyepiece |
| Standard Objective | 2X Objective |
| System Field of View | Dia. 6.5 |
| System Working Distance | 67mm |
Microscope Eyepiece Tube
| Eye Tube Optical System | Finite |
| Eye Tube Type | For Compound Microscope |
| Eye Tube Angle | 60° |
| Erect/Inverted Image | Erect image |
| Eye Tube Rotatable | Fixed |
Eyepiece
| 15X Eyepiece (1 pc, FN13) | |
| Eyepiece Type | Standard Eyepiece |
| Eyepiece Optical Magnification | 15X |
| Plan Eyepiece | Plan Eyepiece |
| Eyepiece Field of View | Dia. 13mm |
| Eyepoint Type | High Eyepoint Eyepiece |
| Material | Metal |
| Color | Black |
| Applied Field | For Mitutoyo TM Series Measurement Microscope |
Objective
| 2X Objective | |
| Objective Optical System | Finite |
| Objective Optical Magnification | 2X |
| Objective Working Distance | 67mm |
| Numerical Aperture (N.A.) | N.A. 0.07 |
| Objective Immersion Media | Dry Objective |
| Applied Field | For Mitutoyo TM Series Measurement Microscope |
Microscope Stand
| Stand Height | 320mm |
| Base Type | Table Base |
| Base Shape | Rectangle |
| Focus Mode | Manual |
| Coarse/Fine Focus Type | Coarse Focus |
XY Measurement Stage
| XY Stage Travel Distance | 2x2 in. |
| Stage Platform Dimensions | 152x152mm |
Microscope Illuminator
| Illumination Type | LED Dual Illuminated Light |
| Top Illumination | Oblique Top Light |
| Top Illumination Type | LED |
| Bottom Illumination Type | LED |
Power Supply
| Input Voltage | AC 100-240V 50/60Hz |
| Power Cord Connector Type | USA 3 Pins |
Reticle
| Broken Cross-Hair | |
| Reticle Type | Cross Line |
| Background Type | Positive |
| Material | Glass |
| Net Weight | 0.002kg (0.004lbs) |
| Applied Field | For Mitutoyo TM Series Measurement Microscope |
| Notes | 90o Broken Cross-hair |
Environment Requirement
| Operating Temperature | -20~40°C(-4~104°F) |
| Operating Humidity | 80% |
Other Parameters
| Surface Treatment | Spray Paint |
| Material | Metal |
| Net Weight | 14.06kg (31.00lbs) |
Technical Info
Instructions
Measurement MicroscopeClose Λ
| Measurement under the microscope is a kind of non-contact measurement, that is, the measurement tool uses the points, lines, circles, angles, areas, three-dimensional of the image and the complex geometric images of the measured object to measure and calculate without contacting the specimen. For measurements, different optical systems and different measurement methods can be used, from the simplest measurement with scales to tools such as optical measurement platforms, as well as relevant measurement software etc. Measurement microscope is the general term for microscopes with this type of function. Non-contact measurement can measure the data of some small and irregular objects that are not accessible by conventional measuring tools. Especially after amplification of the microscope, its measurement accuracy can be very high, and the error caused by the optical system is small or even negligible. Basic Hardware Requirements of the Measuring Microscope: Lens Requirements: For microscopic measurement, it must be ensured that the image surface of the objective lens is flat. Optical microscopic measurement is actually to measure the image of an object. The image must overcome the curvature of field brought about by the objective lens and the image distortion caused by astigmatism so as to make the measurement more accurate. Therefore, for microscopic measurement, plan objective is recommended; for large-area long-distance measurement, the impact of perspective error also needs to overcome, for which, telecentric objective lens should be used. For microscopic measurement, single light path microscope is generally used, such as metallurgical microscope; for continuous magnification, video zoom lens should be used. Because the two optical paths of the dual light-path stereo microscope have an angle of 12 degrees, on each optical path there has actually a 6 degree inclination angle from the vertical angle, in such a case, the measurement will cause error. If the microscope is continuously zoomed, the main multiple points that need to be zoomed in should have magnification detent. Light Source Requirements: The light source for microscopic measurement should be uniform on the image plane of the field of view, and the bottom light should preferably use parallel light to make the outline and feature points clear. In theory, for microscopic measurement, it is best to use monochromatic light to reduce the effect of chromatic aberration, and therefore red light with the longest wavelength in the visible light is often used in measurement. Platform Requirements: Using optical measurement platform, it is possible to measure some large objects that exceed the microscope's field of view, and can achieve an accuracy of micron or even much smaller. The platform requires that the table plane should be of sound flatness, and maintains stable and leveling during movement. Moreover, the platform needs to have good rigidity, is not deformed or displaced itself, ensuring repeated measurement accuracy. Other Simple Measurement Methods: With the simple mechanism on the microscope, simple measurements and calculations can be performed on some observed objects that are not easy to use contact measurement. In addition to eyepiece reticle and objective micrometer measurement that we are familiar with, there are also other simple methods: for example, using the scale on the microscope stage, its accuracy can reach 0.1mm, which can measure the length of the measured object and roughly calculate its area; Using fine-tuning hand wheel mechanism of the microscope, calculate the height of the object to be observed by converting the fine-tuning number of revolutions into focusing stroke; using the rotating stage and the goniometer eyepiece, measure the angle etc. Calibration: Since the measurement is performed under the microscope on the image after the object is enlarged, it is therefore necessary to add a scale on the observed object so as to determine the actual size. The scale of a general microscope is called microscope micrometer, used to compare the actual size of the object or, as a scale6, to record to the measurement system. Generally, the reticle measurement on the eyepiece of the microscope is between 0.2 μm ~ 25 mm, of which 0.2 μm is the resolution of optical microscope, and 25 mm is the maximum diameter of the microscope field of view. The effect of the magnification should be subtracted from the measured dimensions. Or for the eyepiece reticle, it is necessary to coordinate with the objective micrometer to calibrate under the microscope, convert the grid value on the eyepiece reticle to the length on the objective micrometer, and then measure. In the XYZ measurement platform, the error caused by the measurement in the horizontal and vertical directions of the platform and the error caused in the repeated positioning accuracy by the rigidity of the platform should all be calibrated. For measuring microscopes and scales, the calibration of their system or measuring components is usually conducted by relevant agencies within a certain time frame to make the measurement more accurate. On the Error of Optical measurement: The reason for the error of measurement is multi-faceted. From the theoretical point of view, for rough measurement using eyepiece reticle to zoom in through the objective lens of the microscope, the influence of the error of system magnification is relatively large, and because of the geometric magnification error of the optical lens, the objective lens of ordinary microscope can achieve plus or minus 5%. Measuring with a scale on the objective lens, the problem of error of the measurement result caused by the magnification error of the objective lens can be theoretically solved. Measurement using mechanical platforms, regardless of the drive and measurement scale used, aside from the theoretical error caused by the depth of field of the objective lens, it mainly depends on the measurement reading mechanism, such as gratings, micrometers and dial gauges etc. However, the rigidity of the platform, the flatness of the platform surface, and the level of platform movement will still affect the measurement results. Therefore, finding the problem can improve effectively the accuracy requirements when using even a very economical equipment system. |
FiniteClose Λ
| Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
System Optical MagnificationClose Λ
| The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Total MagnificationClose Λ
| Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
System Field of ViewClose Λ
| Field of View, is also called FOV. The field of view, or FOV, refers to the size of the object plane (i.e., the plane of the point of the observed object perpendicular to the optical axis), or of its conjugate plane (i.e., object to primary image distance), represented by a line value. System field of view is the size of the actual diameter of the image of the terminal display device of the instrument, such as the size of the image in the eyepiece or in the display. Field of view number refers to the diameter of the field diaphragm of the objective lens, or the diameter of the image plane formed by the field diaphragm. Field of view number of objective lens = field of view number of eyepiece / (objective magnification / mechanical tube length) Large field of view makes it easy to observe the full view and more range of the observed object, but the field of view (FOV) is inversely proportional to the magnification and inversely proportional to the resolution, that is, the larger the field of view, the smaller the magnification, and also the lower the resolution of the object to be observed. There are usually two ways to increase the field of view, one is to replace with an objective lens of a smaller multiple, or to replace with an eyepiece of a smaller multiple. |
System Working DistanceClose Λ
| Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object. When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions. In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller. Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance. When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens. |
Eye Tube AngleClose Λ
| Usually the Microscope Eyetube is 45°, some is 30°, Tiltable Eyetube Angle design of a microscope is also known as the ergonomics microscope. 0-30° or 0-45° is an ergonomic design. When the mechanical tube length / focal length of the tube of the microscope is relatively big, the microscope is relatively high, and the user's height or the seat of the work desk is not suitable, long-term use of microscope may cause sitting discomfort. Eyepiece tube with variable angle can freely adjust the angle without lowering the head. Especially when it is close to 0 degree and the human eye is close to horizontal viewing, long-time or long-term use can avoid fatigue damage to the cervical vertebra. |
Erect/Inverted ImageClose Λ
| After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs. When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design. When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera. |
Eyepiece Optical MagnificationClose Λ
| Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece. The standard configuration of a general microscope is a 10X eyepiece. Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X. As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification. |
Eyepiece Field of ViewClose Λ
| The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm. The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect. |
Eyepoint TypeClose Λ
| Eye point refers to the axial distance between the upper end of the metal frame of the eyepiece and the exit of pupil. The exit of pupil distance of high eyepoint eyepiece is farther than that of the eye lens of the ordinary eyepiece. When this distance is greater than or equal to 18mm, it is a high eyepoint eyepiece. When observing, one does not need to be too close to the eyepiece lens, making it comfort to observe, and it can also be viewed with glasses. Generally, there is a glasses logo on the eyepiece, indicating that it is a high eyepoint eyepiece. |
Objective Optical MagnificationClose Λ
| The finite objective is the lateral magnification of the primary image formed by the objective at a prescribed distance. Infinite objective is the lateral magnification of the real image produced by the combination of the objective and the tube lens. Infinite objective magnification = tube lens focal length (mm) / objective focal length (mm) Lateral magnification of the image, that is, the ratio of the size of the image to the size of the object. The larger the magnification of the objective, the higher the resolution, the smaller the corresponding field of view, and the shorter the working distance. |
Objective Working DistanceClose Λ
| The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed. Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view. High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object. The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution. |
Numerical Aperture (N.A.)Close Λ
| Numerical aperture, N.A. for short, is the product of the sinusoidal function value of the opening or solid angle of the beam reflected or refracted from the object into the mouth of the objective and the refractive index of the medium between the front lens of the objective and the object. Simply speaking, it is the magnitude of the luminous flux that can be brought in to the mouth of the objective adapter, the closer the objective to the specimen for observation, the greater the solid angle of the beam entering the mouth of the objective adapter, the greater the N.A. value, and the higher the resolution of the objective. When the mouth of the objective adapter is unchanged and the working distance between the objective and the specimen is constant, the refractive index of the medium will be of certain meaning. For example, the refractive index of air is 1, water is 1.33, and cedar oil is 1.515, therefore, when using an aqueous medium or cedar oil, a greater N.A. value can be obtained, thereby improving the resolution of the objective. Formula is: N.A. = refractive index of the medium X sin solid angle of the beam of the object entering the front lens frame of the objective/ 2 Numerical aperture of the objective. Usually, there is a calculation method for the magnification of the microscope. That is, the magnification of the microscope cannot exceed 1000X of the objective. For example, the numerical aperture of a 100X objective is 1.25, when using a 10X eyepiece, the total magnification is 1000X, far below 1.25 X 1000 = 1250X, then the image seen in the eyepiece is relatively clear; if a 20X eyepiece is used, the total magnification will reach 2000X, much higher than 1250X, then eventhoughthe image actually seen by the 20X eyepiece is relatively large, the effect will be relatively poor. |
Objective Immersion MediaClose Λ
| The use of different media between the objective and the object to be observed is to change and improve the resolution. For example, the refractive index of air is 1, water is 1.33, and cedar oil is 1.515. Therefore, when using an aqueous medium or cedar oil, a greater N.A. value can be obtained, thereby increasing the resolution of the objective. Air medium is called dry objective, where oil is used as medium iscalled oil immersion objective, and water medium is called water immersion objective. However, because of the working distance of the objective, when the working distance of the objective is too long, the use of liquid medium will be relatively more difficult, and it is generally used only on high magnification objective having a shorter working distance, such as objectives of 60X, 80X and 100X. When using oil immersion objective, first add a drop of cedar oil (objective oil) on the cover glass, then adjust the focus (fine adjustment) knob, and carefully observe it from under the side of the objective of the microscope, until the oil immersion objective is immersed in the cedar oil and close to the cover glass of the specimen, then use the eyepiece to observe, and use the fine focus knob to lift the tube until the clear imageof the specimen is clearly seen. The cedar oil should be added in an appropriate amount. After the oil immersion objective is used, it is necessary to use a piece of lens wiping tissue to dip xylene to wipe off the cedar oil, and then wipe dry the lens thoroughly with a lens wiping tissue. |
XY Measurement StageClose Λ
| The XY measurement stage refers to the stage with a measuring mechanism in the XY horizontal direction, and it requires that the stage has relatively high accuracy. The stage not only has a flatness requirement on the surface, but also needs to ensure that in measurement the XY plane is always in a horizontal position during the movement. For the XY measurement stage, especially when observing and measuring the observed object beyond the field of view, the stage can be moved, and reading can be carried out through an externally attached measurement device to measure accurately large sized objects. XY Stage Measurement Method For XY measurements, a crosshair is required within the measurement field of view for aiming and positioning. The crosshair can be obtained by various means, generally on the eyepiece, using the preset reticle method, which is the simplest method. When using the monitor screen for measurement, a cross reticle can also be used, which is placed in the photographic eyepiece optical system. This method is simple and practical, the reticle is relatively clear, and various patterns of reticle can be used. It is also convenient to adjust the alignment angle of the reticle in the eyepiece. At present, more and more measurements use the crosshair function in the camera. The crosshairs are displayed by splicing the pixels of the same color, and even the color can be selected so that it is clearly distinguished from the background pattern, making the crosshairs more conspicuous and easy to operate. Some cameras have crosshairs that can also add multiple sets of lines, and can move horizontally and vertically so as to combine a variety of rectangular patterns of different sizes. One can apply and mark the position and size of the observed specimens. In industrial processing, it has the profilometer and projector functions. In addition to the camera to obtain the crosshair, there is also method of using a crosshair generator, display and other devices to obtain crosshair. During measurement, first place the object to be measured on the center position of the field of view of the stage, adjust the clear image, open the crosshair, and then move the object to be measured to the starting position to be measured, so that the center intersection of the crosshair is aligned with the said position, turn on the scale 0 position (or note the reading position), then move the object to be measured in the X or Y direction until the end point of the measurement position, then stops, and finally read through the measuring scale. Measurement error in XY horizontal direction During measurement, aim at the starting point of the object to be measured through the eyepiece or the cross positioning on the display, then move the stage, so that the stage is moved to the end point in the horizontal axial movement. At this time, it is necessary to ensure that the distance between the two points is the actual distance of the horizontal direction. If the stage is tilted, an angle is created between the horizontal direction and the tilted or oblique direction. The numerical value we read is actually the length of a diagonal line, thereby causing error. For XY stage measurement, it is necessary to use a high-magnification objective as much as possible. The objective lens has a certain depth of field. The smaller the objective lens is, the larger the depth of field will be. The large depth of field cannot reflect the image blurring conditions caused by the up and down misalignment when the stage moves horizontally: the bigger the objective magnification, the smaller the depth of field. When the stage is not flat and moves out of the depth of field range, the image will be out of focus and becomes blurred, indicating that the stage is in a non-horizontal position, and the accuracy of the measurement at this time will be higher. In principle, the depth of field range of the objective of the microscope is the minimum error range of the flatness of the platform stage. For XY horizontal measurement, when measuring objects with shorter lengths, this error is very small, even negligible. If the measured object is relatively long, the bigger the angle at which the stage is tilted, the greater the differential value between the oblique line of the measured image and the actual horizontal line segment of the object, and also the bigger the accumulated error will be. Because big stage has a bigger accumulated error, when measuring a relatively bigger length, it is necessary to calibrate the error within the stage system in advance. In measurement using computer software, the value of this accumulated error can be input into the measurement result for correction. Therefore, it must be ensured that the stage is always in a horizontal state in movement, which is the most basic requirement in optical measurement. Ways to adjust the level of the XY stage: 1. Use a cross reticle in the eyepiece or display. 2. Select an objective with the largest magnification in the microscope system, and place a calibrated line ruler on the stage (a long transparent glass ruler for calibration). The marked front of the line ruler is below the ruler, near the side of the stage countertop. 3. Overlap the starting point of the line ruler with the starting position on one side of the stage; adjust the focus, ensure that the objective is aligned with the starting position image of the line scale to obtain the clearest image. 4. Move the X direction of the stage, so that the stage moves along the direction of the line ruler, and at the same time observe whether the grid image of the line ruler is clear, and record the blurred position of the image until the end position. After completion, do the side of the Y direction. 5. Among the above results, the unclear position is the position where the stage is not flat. If the stage is unable to maintain horizontal, after the initial position is focus adjusted to get a clear image, the image will become more and more blurred, and in most cases, the stage is tilted to one side (up or down). To solve this problem, adjust the height of the four feet of the stage, or adjust the height position of the screws at the four corners of the bottom glazing of the stage center to keep the stage horizontal. In general, adjusting the stage horizontal can adjust the height of the position of the anchor screw of the stage, or use a very thin shim (Shim) to adjust. Sometimes, it is also necessary to adjust the perpendicularity of the optical axis of the microscope. Use the screw that fixes the microscope to top move the microscope, to make it shift in the vertical direction, keeping the microscope in a vertical position. Using a line ruler can also calibrate whether the distance traveled by the line ruler at each grid value for measurement is consistent with the distance read by the stage drive (for example, the reading from the micrometer or the digital display), thereby calibrating the error of the stage movement accuracy. Such errors are often caused by the empty return of the stage drive or the insufficient of stage stiffness etc. If line ruler is not used and the stage surface is observed directly, the above results can also be obtained. Also, when the stage surface is moved to each position, that whether the surface of the stage is uneven when processing can be displayed through clear or blurred image position, and can also observe whether the flatness of the stage plane itself is within the allowable range of the depth of field of the objective. |
ReticleClose Λ
| Reticle is generally also referred to as eyepiece reticle, or reticule, graticule, cross hair. Reticle is an optical component with a certain mark placed inside the eyepiece. Based on different applications, reticle can be used for measurement, calibration or aiming. Reticle is mainly used for the measurement of length, angle or area of the object to be measured under the microscope. The reticle measurement is a "non-contact measurement", that is, the measurement value is obtained by measuring the optical image without touching the object to be measured, which is very suitable for some small specimens, organisms, and irregular objects. Eyepiece reticle has patterns of various shapes and sizes. Common types of eyepiece reticle are: straight, cross, mesh, circle, angle or combination shape. Between each grid it is also equidistant. However, for eyepiece reticle, one cannot read directly the number under the microscope, but convert firstly the multiple after magnification of the microscope objective lens. In short, after the object is being magnified by the objective lens, the real image of the object reaches the focal length of the eyepiece (10 mm below the fixed surface of the eyepiece), which is exactly the position of the eyepiece reticle, and what the eyepiece reticle reads is actually the image of the object after being magnified by the objective lens. Therefore, for the actual numerical value, the actual size of the image should be divided by the magnification of the objective lens. In addition, for eyepiece reticle measurement, it can also be calibrated first by the objective micrometer before measurement. The method is: first, place an objective micrometer on the stage, after the focus is clear, record the magnification number of the objective. Then, the eyepiece reticle is overlapped with the scale pattern of the objective micrometer, so that the 0 points of the two are aligned, a scale value with a completely coincident scale is found backward, the grid values of the reticle eyepiece and the objective micrometer are respectively read and converted, and then the calibration value is used as the actual measurement value of the eyepiece reticle. This method is relatively more complicated. First, it is necessary to constantly convert the reading value and the calibration value of the eyepiece. Secondly, each time when the objective lens with different magnifications for observation is changed, it needs to be re-calibrated. This is only suitable for use in strongly repetitive microscope observations and work in order to be efficient. Reticle Installation The reticle is installed in the eyepiece tube, and some eyepieces have been installed with reticle before leaving the factory. Since the requirements are different, users can also buy different reticle, and then install it on their own microscope. To install the reticle yourself, first make sure that the eyepiece of the microscope can be self-removed from the microscope eyepiece tube (generally, for microscopes, all their eyepieces can be removed, and some need to loosen the screws fastened on the microscope eyepiece tube to remove the eyepiece.) For eyepieces on which reticle can be installed, you should pay attention to the following features and requirements: 1. Whether the tube wall of the eyepiece has a “mounting/installation surface” on which the reticle is placed. Generally, the eyepieces are located 10mm below the lower lens. This position is the focal plane of the eyepiece. The reticle is installed in this position to be clear. 2. Whether it has "Eyepiece Reticle Fix Ring". There are generally two ways for this fix ring: one is that there is the thread on the inner wall of the eyepiece tube, a metal fix ring with a card slot for positioning when using a screwdriver, by rotating the screwdriver, the reticle is pressed on the inner wall of the eyepiece. There is also a"plug ring type"fix ring, usually made of plastic material, which is elastic and inserted into the eyepiece tube, and then stuck on the inner wall of the eyepiece tube to press the reticle. If this"fix ring" is missing in the eyepiece tube, please contact your service provider to describe the above situation, and some service providers can provide this fix ring. 3. The tick marks of the reticle are all on top of the reticle. Generally, all reticles of the glass material have a certain thickness, and the tick marks of the reticle is on top of the reticle to ensure that all the tick marks are in the eyepiece focal plane (10 mm below the eyepiece) when using the reticle of different thickness. 4. Measure the diameter of the inner wall of the microscope eyepiece tube, to select the appropriate size of the reticle. Upon understanding the above, if you need to choose reticle for different purpose of use, please visit Bolioptics.com to select reticle with a different pattern for use. |
PackagingClose Λ
| After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Optical Data
| Microscope Optical Data Sheet | ||||||||
| P/N | Objective | Objective Working Distance | Eyepiece | |||||
| Mitutoyo-176-115 (10X Dia. 13mm) | Mitutoyo-176-116 (15X Dia. 13mm) | Mitutoyo-176-117 (20X Dia. 10mm) | ||||||
| Magnification | Field of View(mm) | Magnification | Field of View(mm) | Magnification | Field of View(mm) | |||
| Mitutoyo-176-138 | 2X | 67mm | 20X | 6.5mm | 30X | 6.5mm | 40X | 5mm |
| Mitutoyo-176-139 | 5X | 33mm | 50X | 2.6mm | 75X | 2.6mm | 100X | 2mm |
| Mitutoyo-176-137 | 10X | 14mm | 100X | 1.3mm | 150X | 1.3mm | 200X | 1mm |
| 1. Magnification=Objective Optical Magnification * Body Magnification * Eyepiece Optical Magnification | ||||||||
| 2. Field of View=Eyepiece Field of View /(Objective Optical Magnification*Body Magnification) | ||||||||
| 3. The Darker background items are Standard items, the white background items are optional items. | ||||||||
| Contains | |||||||||||||
| Parts Including | |||||||||||||
| |||||||||||||
| Desiccant Bag | 1 Bag | ||||||||||||
| Dust Cover | 1pc | ||||||||||||
| Spare Bulb | 2pc | ||||||||||||
| Product Instructions/Operation Manual | 1pc | ||||||||||||
| Packing | |
| Packaging Type | Carton Packaging |
| Packaging Material | Corrugated Carton |
| Inner Packing Material | Plastic Bag |
| Ancillary Packaging Materials | Expanded Polystyrene |
| Gross Weight | 15.56kg (34.30lbs) |
| Minimum Packaging Quantity | 1pc |
| Transportation Carton | Carton Packaging |
| Transportation Carton Material | Corrugated Carton |




