Quick Overview
Finite. Total Magnification: 7-50X. 10X High Eyepoint Eyepiece. 1X Built-in Objective. Standard Coupler: 0.5X. Zoom Ratio: 1:7.1. Trinocular. Body Mounting Size for Stand: Dia. 76mm. Eye Tube Angle: 45°. Eyepiece Field of View: Dia. 20mm. Post Stand. UV FREE LED Light. Light Adjustable. CMOS. 2.0 Megapixels. HDMI / USB 2.0. Windows XP/7/8/10/11. Screen Size: 11.6in. Input Voltage: AC 100-240V 50/60Hz. Input Voltage: AC 90-265V 50/60Hz. Input Voltage: DC 12V. ESD Safe.
SZ02090135 Trinocular Zoom Stereo Microscope
Optical System Specifications
Optical System | Finite |
System Optical Magnification | 7-50X |
Trinocular Optical Magnification | 0.35-2.5X |
Total Magnification | 7-50X |
Standard Eyepiece | 10X High Eyepoint Eyepiece |
Standard Objective | 1X Built-in Objective |
Standard Coupler | 0.5X |
System Field of View | Dia. 4-28.57mm |
System Working Distance | 103mm |
Trinocular Zoom Body
ESD Trinocular Zoom Body | |
Body Optical System | Finite |
Body Magnification | 7-50X |
Zoom Range | 0.7-5X |
Zoom Ratio | 1:7.1 |
Zoom Operating Mode | With Two Horizontal Knobs |
Observation Method | Trinocular |
Body Mounting Size for Stand | Dia. 76mm |
Body Mount Type for Coupler | Thread Screw |
Body Mount Size for Coupler | Dia. 28mm |
Nosepiece Adapter Size for Ring Light | Dia. 54mm |
Eye Tube Adjustment Mode | Siedentopf |
Eye Tube Angle | 45° |
Erect/Inverted Image | Erect image |
Eye Tube Rotatable | 360° Degree Rotatable |
Interpupillary Adjustment | 45-65mm |
Eye Tube Inner Diameter | Dia. 30mm |
Eye Tube Diopter Adjustable | ±5° |
Eyepiece Type | Standard Eyepiece |
Eyepiece Optical Magnification | 10X |
Plan Eyepiece | Plan Eyepiece |
Eyepiece Size for Eye Tube | Dia. 30mm |
Eyepiece Field of View | Dia. 20mm |
Eyepoint Type | High Eyepoint Eyepiece |
Eyepiece Size for Reticle | Dia. 24mm |
Eye Guard Installation | Independent Eye Guard |
Eye Guard Mount Size | Dia. 36mm |
Built-in Objective Magnification | 1X |
Objective Working Distance | 103mm |
Objective Screw Thread | M48x0.75mm |
Surface Treatment | Spray Paint |
ESD Safe | ESD Safe |
Material | Metal |
Color | Black |
Net Weight | 1.27kg (2.80lbs) |
Ring Adapter
Ring Adapter Outer Diameter | Dia. 49.5mm |
Ring Adapter Screw Thread | M48x0.75mm |
Ring Adapter Slot | Two cut slots |
Surface Treatment | Polished Aluminum |
Material | Aluminum |
Color | White |
Net Weight | 0.02kg (0.04lbs) |
Applied Field | For FS0801, SZ0801, SZ0802, SZ0501, SZ0502, SZ0503, SZ0702, SZ1901, FS0503 Series Microscope |
Post Stand
76mm ESD Post Stand | |
Stand Type | Post Stand |
Holder Adapter Type | Dia. 76mm Scope Holder |
Vertical Post Height | 250mm |
Vertical Post Diameter | Dia. 32mm |
Base Type | Table Base |
Base Shape | Fan-Shape |
Base Dimensions | 206x273x22mm |
Focus Mode | Manual |
Focus Distance | 50mm |
Coarse Focus Distance per Rotation | 25mm |
Focusing Knob Tightness Adjustable | Tightness Adjustable |
Center Distance from Hole to Scope Holder | 155mm |
Surface Treatment | Spray Paint |
ESD Safe | ESD Safe |
Material | Metal |
Color | Black |
Net Weight | 2.48kg (5.47lbs) |
Dimensions | 273x206x272mm (10.748x8.110x10.709 in. ) |
Microscope Plate
100x6mm Black White Plate | |
Plate Type | Black White Plate |
Plate Size | Dia. 100x6mm |
Material | Plastic (ABS) |
Color | Black, White |
Net Weight | 0.05kg (0.11lbs) |
Applied Field | For ST0501, ST1901 Series Post Stand. ST0503, ST2703 Series Track Stand |
Ring Light
ESD UV Free LED Ring Light (7.2W ID61mm 120Bulbs) | |
Light Source Type | UV FREE LED Light |
Ring I.D. Size | Dia. 61mm |
LED Quantity | 120 |
Power Supply Adjustable | Light Adjustable |
Power Box Panel Meter Display | Pointer Panel Meter/Scale |
Power Box Cooling System | Heat Sink |
Power Box Dimensions | 122x96x43mm |
Output Power | 7.2W |
Input Voltage | AC 90-265V 50/60Hz |
Output Voltage | DC 12V |
Power Cord Connector Type | USA 3 Pins |
Power Cable Length | 1.3m |
ESD Safe | ESD Safe |
Material | Metal |
Color | Black |
Net Weight | 0.50kg (1.10lbs) |
Screw Model | M3x30mm |
Coupler/C-mount Adapter
0.5X Coupler | |
Coupler Mount Type for Trinocular | Fastening Screw |
Coupler Mount Size for Trinocular | Dia. 38mm |
Adjustable Coupler | Adjustable |
Coupler for Microscope Type | Stereo Compatible |
Coupler Magnification | 0.5X |
C/CS-Mount Coupler | C-Mount |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.10kg (0.22lbs) |
Applied Field | For SZ0502, SZ0503 Series Trinocular Zoom Body |
HDMI Camera
2M HDMI Color Camera | |
Image Sensor | CMOS |
Image Sensor Size | 1/2.86 in. |
Image Sensor Diagonal size | 6.592mm (0.260 in. ) |
Camera Maximum Pixels | 2.0 Megapixels |
Camera Resolution | 1920x1080 |
Camera Signal Output Port | HDMI / USB 2.0 |
Camera Lens Mount | C-Mount |
Transmission Frame Rate | 30fps@1920x1080 |
White Balance | Manual/Auto |
Gain Control | Adjustable |
Exposure Control | Manual |
Image Comparison | Yes |
Image Freeze Function | Image Freeze |
Digital Zoom Function | 10X |
Camera Crosshairs | Cross Line |
Number of Crosshairs | 4 Movable Crosshairs |
Line Color | User Defined |
Capture Function | Yes |
Image Capture Output Format | Bitmap |
Video Output Format | AVI |
Language | English |
System Requirement | Windows XP/7/8/10/11 |
Camera Housing Material | Metal |
Camera Housing Size | 83x74x53mm |
Camera Housing Color | Blue |
Memory Type | SD |
Input Voltage | DC 12V |
Surface Treatment | Electroplating |
Net Weight | 0.60kg (1.32lbs) |
Camera Accessories
2M HDMI Color Camera | |
Mouse Operation | Yes |
Memory Type | SD |
Memory Capacity | 8G |
TFT-LCD Monitor
11.6 in. Color Monitor | |
Screen Size | 11.6in |
Screen Aspect Ratio | 16:9 |
Monitor Input Signal Format | HDMI |
Monitor Max. Resolution | 1920x1080 |
Screen Active Area | 282x180mm (11.102x7.087 in. ) |
Screen Contrast | 1000:1 |
Screen Brightness | 450cd/m2 |
Response Time | 26ms |
Screen Viewing Angle | H: 80°/80° V: 80°/80° |
Screen Backlight | LCD Display |
Monitor Operating Temperature | 10°C~40°C |
Monitor Operating Humidity | 10%-80% |
Monitor Housing Material | Plastic |
Monitor Housing Size | 280x180x15mm |
Monitor Housing Color | Black |
Output Power | 12W |
Input Voltage | AC 100-240V 50/60Hz |
Output Voltage | DC 12V |
Power Cord Connector Type | USA 2 Pins |
Power Cable Length | 1.5m |
Net Weight | 0.42kg (0.93lbs) |
Other Parameters
Surface Treatment | Spray Paint |
ESD Safe | ESD Safe |
Material | Metal |
Color | Black |
Net Weight | 5.30kg (11.68lbs) |
Dimensions | 273x206x272mm (10.748x8.110x10.709 in. ) |
Series
SZ1904 | SZ02090135 |
Technical Info
Instructions
Stereo MicroscopeClose Λ
Stereo microscopes are also known as the anatomical microscopes, or dissecting microscopes. Many people would refer to stereo microscope as Stereo, and the Continuous Zoom Microscope as Zoom. Stereo microscopes are a kind of binocular microscope that observes an object with both eyes from different angles, thereby causing a stereoscopic effect. The stereo microscope adopts two independent optical paths, and the left and right beams in the binocular tube have a certain angle, generally 12°~15°. The objects are observed from different angles of the two optical paths, causing a three-dimensional effect on the eyes, and therefore a stereo microscope is a true 3D microscope. Compared with other compound microscopes, stereo microscopes belong to the low power optical microscope. The field of view of stereo microscopes has a large diameter, its magnification is generally below 200X for optical magnification. When the magnification is greater than 40X, the stereoscopic effect of the image will be relatively poor. Therefore, the advantage of the stereo microscope is not that its magnification is large, but that its working distance is long and the depth of field is large, which is particularly suitable for observing objects with a high degree of three-dimensional features. For compound microscope with a single optical path, what we see is only a flat image. Although most compound microscopes have two eyepieces, what we actually see is one and the same image, and this is just to facilitate the observation habits of our two eyes. The stereo microscope has two optical paths (two objective lenses or one common objective lens), and only the three-dimensional sense produced under observation of the two optical paths can make people judge the three-dimensional spatial position of the observed object, which can generate a sense of distance under the microscope. Therefore, only stereo microscope can be used for operation under the microscope which is very suitable for surgery, dissection, industrial welding, assembly, precision instrument repair and so on. The stereo microscope can be equipped with a wide range of accessories. It can be combined with various digital cameras and photographic interfaces, microscope cameras, eyepiece cameras and image analysis software to form a digital imaging system. It can be connected to a computer for analysis and processing, and its lighting system also has different options for illumination, such as reflected light, transmitted light, etc. Stereoscopic microscopes are widely used in various fields, such as biology, medicine, agriculture, forestry, marine life, and other various departments. They are especially used in industry, for macroscopic surface observation, analysis, and microscopic operations. Stereoscopic microscopes were invented by American instrument engineer Horatio S. Greenough in the 1890s, manufactured by Carl Zeiss Company of Germany, and are widely used in scientific research, archaeological exploration, industrial quality control, biopharmaceuticals, and more. Stereo Microscope Quick Operation Steps Step 1 In the working position, place the microscope on the workbench after installation. Connect the power source, and turn on the light source. Place an observation sample (also known as specimen) such as a coin etc. under the microscope or on the base. Adjust the focus knob of the stand by visually measuring the height, or based on the working distance parameters of the objective lens used. Step 2 Adjust the zoom knob of the microscope to the lowest magnification. Find the approximate image by adjusting the focus knob. Find a certain feature point of the sample in approximately the center position. Align the feature point of the specimen and gradually adjust to a large magnification. Adjust the lift set of the microscope to find the focal plane of the highest magnification. During the adjustment process, use a sample with obvious feature points (such as a coin) to compare the sharpness of the image. Turn the zoom knob again to the lowest magnification. It is possible that the image may be out of focus. At this time, do not adjust the focusing knob. Simply adjust the diopters on the two eyepieces to accommodate differences in eye observations (diopter varies from person to person). Adjust the viewing distance of the eyepiece to achieve a comfortable position. At this point, the microscope is already parfocal, i.e., when the microscope is changed from high power to low power, the entire image is in the focal plane. To observe the same sample, it is not necessary to adjust other parts of the microscope. Only the zoom knob is needed to zoom in on the specimen for observation. Step 3 Adjust the light source, including the brightness and angle of incidence to get the best image or see additional details. Step 4 Adjust any other necessary equipment such as the photographic eyepieces, cameras, etc., to show the image on the display or to find the sharpest image. When using binocular observation and the left and right images or sharpness is not the same, first adjust the diopter adjustment on the eyepiece. This adjusts the parallax of the two eyes, so that the image of the two eyes are consistent. It is normal to feel viewing fatigue when using a microscope for a long time. Take a break before working again to adapt your eyes to using the microscope. If the microscope is used for too long, or if there is a problem inside the microscope due to large temperature difference, vibration, etc., please contact your dealer or our service staff on the BoliOptics website. |
FiniteClose Λ
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Trinocular Optical MagnificationClose Λ
When the instrument is conducting electronic image magnification and observation through a camera or the like, the optically magnified portion may not be the optical path that passes through the "eyepiece-objective lens" of the instrument, at this time, the calculation method of the magnification is related to the third-party photo eyepiece passed. The trinocular optical magnification is equal to the multiplier product of objective lens (objective lens set) and the photo eyepiece Trinocular optical magnification = objective lens X photo eyepiece |
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
System Field of ViewClose Λ
Field of View, is also called FOV. The field of view, or FOV, refers to the size of the object plane (i.e., the plane of the point of the observed object perpendicular to the optical axis), or of its conjugate plane (i.e., object to primary image distance), represented by a line value. System field of view is the size of the actual diameter of the image of the terminal display device of the instrument, such as the size of the image in the eyepiece or in the display. Field of view number refers to the diameter of the field diaphragm of the objective lens, or the diameter of the image plane formed by the field diaphragm. Field of view number of objective lens = field of view number of eyepiece / (objective magnification / mechanical tube length) Large field of view makes it easy to observe the full view and more range of the observed object, but the field of view (FOV) is inversely proportional to the magnification and inversely proportional to the resolution, that is, the larger the field of view, the smaller the magnification, and also the lower the resolution of the object to be observed. There are usually two ways to increase the field of view, one is to replace with an objective lens of a smaller multiple, or to replace with an eyepiece of a smaller multiple. |
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object. When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions. In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller. Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance. When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens. |
Trinocular Zoom BodyClose Λ
Trinocular zoom body is the main body of a stereo microscope that has continuous zooming functions. In addition to the two eyepieces for observation, there is a third optical path (image port), which is usually a set of optical paths borrowed from the microscope for connecting to the camera to facilitate the observation with the display or connecting to a computer. Usually, the third ocular of the body can be configured with different photo eyepieces, or other interfaces to connect to different webcam, cameras and so on. This body usually needs to be placed on a microscope stand for use. Generally, a variety of eyepieces and objective lenses with different magnifications can be selected, and high-end stereo microscope usually has a wide range of accessories for selection. |
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope. Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process. The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be. |
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4. Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly. |
With Two Horizontal KnobsClose Λ
When microscope body changes the magnification, it is realized by adjusting the horizontally placed zoom knob. Because the knob is relatively small, it is therefore easier to zoom and the image is stable. For most of the dual stereo microscopes, magnification is realized by adjusting the zoom drum or nosepiece below. When the nosepiece is relatively big, frequent operation is more laborious. Magnifying while observing, the microscope may shake, thereby causing eye discomfort for observation. Using zoom drum or nosepiece type microscope, if there is a ring light under the microscope, the ring light carries the wire, and when magnification conversion is often required, the ring light and the wire will swing along with the magnification, which makes the operation inconvenient. This situation will not occur to zoom with two horizontal knobs. |
SiedentopfClose Λ
For siedentopf eyetube, when changing the interpupillary distance, it requires two hands pushing or pulling the two eyetubes left and right simultaneously, and the two eyepiece tubes or eyetubes will change their position at the same time. |
Eye Tube AngleClose Λ
Usually the Microscope Eyetube is 45°, some is 30°, Tiltable Eyetube Angle design of a microscope is also known as the ergonomics microscope. 0-30° or 0-45° is an ergonomic design. When the mechanical tube length / focal length of the tube of the microscope is relatively big, the microscope is relatively high, and the user's height or the seat of the work desk is not suitable, long-term use of microscope may cause sitting discomfort. Eyepiece tube with variable angle can freely adjust the angle without lowering the head. Especially when it is close to 0 degree and the human eye is close to horizontal viewing, long-time or long-term use can avoid fatigue damage to the cervical vertebra. |
Erect/Inverted ImageClose Λ
After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs. When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design. When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera. |
360° Degree RotatableClose Λ
The eyepiece of the microscope can have different viewing or observing directions. When the position of the microscope is uncomfortable, the direction of the eyepiece tube of the microscope can be adjusted, to facilitate observation and operation. Placement method of different viewing angles of the microscope: General direction: the support column is behind the object to be observed Reverse direction: the support column is in front of the object to be observed Lateral direction: the support column is on the side of the object to be observed Rotating eyepiece tube, different microscopes may have different methods, for some, the direction is confirmed when installing the eyepiece tube of the microscope, for some, by rotating the body of the microscope, and for some, by rotating the support member on the support or holder of the microscope. |
Interpupillary AdjustmentClose Λ
The distance between the two pupils of the human eye is different. When the image of exit pupil of the two eyepieces of the microscope are not aligned with the entry pupil of the eye, the two eyes will see different images, which can cause discomfort. Adjust the distance between the two eyepieces, to accommodate or adapt to the pupil distance of the observer's eyes. The adjustment range is generally between 55-75mm. |
Eye Tube Diopter AdjustableClose Λ
For most people, their two eyes, the left and the right, have different vision; for the eyepiece tube, the eyepoint height of the eyepiece can be adjusted to compensate for the difference in vision between the two eyes, so that the imaging in the two eyes is clear and consistent. The range of adjustment of the eyepiece tube is generally diopter plus or minus 5 degrees, and the maximum differential value between the two eyepieces can reach 10 degrees. Monocular adjustable and binocular adjustable: some microscopes have one eyepiece tube adjustable, and some have two eyepiece tubes adjustable. First, adjust one eyepiece tube to the 0 degree position, adjust the microscope focusing knob, and find the clear image of this eyepiece (when the monocular adjustable is used, first adjust the focusing knob to make this eyepiece image clear), then adjust the image of another eyepiece tube (do not adjust the focusing knob again at this time), repeatedly adjust to find the clear position, then the two images are clear at the same time. For this particular user, do not adjust this device anymore in the future. As some microscopes do not have the vision adjustment mechanism for the eyepiece tube, the vision of the two eyes are adjusted through the eyepiece adjustable. |
Eyepiece Optical MagnificationClose Λ
Eyepiece optical magnification is the visual magnification of the virtual image after initial imaging through the eyepiece. When the human eye observes through the eyepiece, the ratio of the tangent of the angle of view of the image and the tangent of the angle of view of the human eye when viewing or observing the object directly at the reference viewing distance is usually calculated according to 250 mm/focal length of eyepiece. The standard configuration of a general microscope is a 10X eyepiece. Usually, the magnification of the eyepiece of compound microscope is 5X, 8X, 10X, 12.5X, 16X, 20X. As stereo microscope has a low total magnification, its eyepiece magnification generally does not use 5X, but can achieve 25X, 30X and other much bigger magnification. |
Eyepiece Field of ViewClose Λ
The eyepiece field of view is the diameter of the field diaphragm of the eyepiece, or the diameter of the image plane of the field diaphragm imaged by the field diaphragm. The diameter of a large field of view can increase the viewing range, and see more detail in the field of view. However, if the field of view is too large, the spherical aberration and distortion around the eyepiece will increase, and the stray light around the field of view will affect the imaging effect. |
Eyepoint TypeClose Λ
Eye point refers to the axial distance between the upper end of the metal frame of the eyepiece and the exit of pupil. The exit of pupil distance of high eyepoint eyepiece is farther than that of the eye lens of the ordinary eyepiece. When this distance is greater than or equal to 18mm, it is a high eyepoint eyepiece. When observing, one does not need to be too close to the eyepiece lens, making it comfort to observe, and it can also be viewed with glasses. Generally, there is a glasses logo on the eyepiece, indicating that it is a high eyepoint eyepiece. |
Independent Eye GuardClose Λ
The main function of the eye guard is to block the ambient stray light, which makes it more clearer when observing through the eyepiece. In addition, the height of the eye guard is basically the eyepoint exit pupil distance of the eyepiece, and when the eye is close to the eye guard, it is the exact position for clear imaging. |
Built-in Objective MagnificationClose Λ
The objective of a stereo microscope is mostly built-in objective, which is usually mounted in the microscope body, and it is one or a set of lenses closest to the object to be observed. When not marked, the built-in objective is 1X. |
Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed. Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view. High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object. The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution. |
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different. In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably. One is the British system: RMS type objective thread: 4/5in X 1/36in, One is metric: M25 X 0.75mm thread. |
ESD SafeClose Λ
Static electricity is a charge that is at static or non-flowing state, and static electricity is formed when charges accumulate on an object or surface. Static electricity can cause malfunction or mis-opeartion of electronic equipment, resulting in electromagnetic interference. In the electronics industry, static electricity can break down integrated circuits and precision electronic components, causing components to age, and can also absorb dust, causing contamination of integrated circuits and semiconductor components, and reducing production yield. In the plastics industry, static electricity can cause film or membrane not wining up uniformly, film and CD plastic discs contaminated with dust, thereby affecting quality. In industrial production, especially in electronic production and processing and inflammable and explosive production sites, electrostatic protection should be taken seriously. ESD means "electro-static discharge." For the methods of ESD treatment with respect to microscope and components, electrical conductivity of the metal should be utilized on the one hand, and on the other hand, electrostatic materials, electrostatic coating and other methods of treatment should be adopted to solve the electrostatic problem. Electrostatic coating is to apply coat that can prevent static electricity. It has electrostatic discharge, dust-proof, mildew-proof, wear-resistant, acid and alkali resistance and other characteristics. The surface of the coating does not generate static electricity or the static electricity is discharged to the safe place through the conductor row. On some components, electrostatic materials may be applied, such as the microscope knob handle, insulation mat, septum, microscope cover etc. |
Ring AdapterClose Λ
Ring adapter is used for the nosepiece under the stereo microscope or the circular interface under the microscope objective, with appropriate threads to engage. The main function of the ring adapter is to connect the ring light. Some microscopes have grooves on their nosepiece, which can directly clamp the ring light, but it can easily damage the surface of the nosepiece of the appearance of the microscope, so it is more suitable to use an interface. Some ring adapters have one or two grooves on them, and they are used to clamp screw of the ring lights. There are also ring lights that are clamped on the Barlow lens of the microscope. If the lower end of the Barlow lens is threaded, an additional ring adapter can also be attached to clamp the ring light, so as to protect the surface of the objective. Usually, the ring adapter has very fine mounting threads. When the objective/ring adapter needs to be mounted, the mounting should be careful. Align the position of the nosepiece for installation to keep it completely “flat”. When it is blocked, remove it and install again, do not force it in. |
Post StandClose Λ
Post stand generally has relatively tall post. When the focus is adjusted, the focusing mechanism can slide up and down the post, the microscope is thus placed in an approximately focused position, and then the focusing mechanism makes fine and accurate adjustment. This kind of stand can move quickly, and is suitable for viewing objects with a higher height and bigger volume. After the microscope is mounted, the microscope imaging center needs to be aligned with the center of the platen. The focusing mechanism button on the post must be tightened to lock the guard ring device, and the microscope should be prevented from loosening and shaking when working. When it is necessary to adjust the height, hold the microscope and the focusing mechanism with one hand, then release the knob, adjust it to the proper position, lock the knob, then top the guard ring to the lower position of the focusing mechanism, and lock it tight. In particular, avoid accidental dropping of the microscope due to gravity, thereby damaging the microscope and the objects below. |
Dia. 76mm Scope HolderClose Λ
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers. Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use. Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm. |
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body. Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen) In general, after long-time use, the knob will be loose, and adjustment is necessary. |
Microscope PlateClose Λ
According to different objects to be observed, the appropriate platen should be selected. The microscope plate materials include black and white, black and white finish; transparent glass, frosted glass, metal, etc. Standard stands are generally configured with a suitable microscope plate, but different plates may need to be purchased separately. Black and white microscope plate are made of general plastics, and the different backgrounds in black and white make the object more prominent. Finish microscope plate eliminates reflections during observation. Transparent glass plate is used when observing transparent or translucent objects, and the use of transmitted light source is to make the light penetrate the object to be observed as much as possible. Finish glass plate, with its rough glass surface, can make the transmitted light more uniform and create a diffusing effect, avoiding exposure of the light shadow of the filament directly onto to the observed object. Metal plate, relatively more solid, is more suitable when it is necessary to operate and cut. Microscope plate is generally round shaped, on one side of the base there is a spring clip. When installing, align the plate with the clamp and push it in, and then press down the other end, so that the plate is smoothly embedded in to the circular card slot of the bottom plate. When removing, grab the other end of the clip, push and lift up the plate. |
Ring LightClose Λ
Ring light is a kind of "shadowless lamp", which is illuminated from a 360-degree annular angle, and can observe the change of the edge and height of the object to be observed. It is very suitable for surface illumination of non-reflective objects, and is often used to observe and detect the edge of objects, surface structure, traces, etc. such as components on the printed circuit board, liquid crystal glass substrates, metal and non-metal surface dust, scratch damage, various kinds of particles, etc., and is also the most common way of illumination for stereo microscopes. Circular fluorescent light bulb is a bulb of peripheral illumination with no direction, it requires a reflective bowl to converge the light beam onto the illuminated object below the microscope. The diameter of the tube and the design of the reflective bowl determine the distance and position of the beam convergence point. The LED ring light consists of different LED bulbs. By setting the angle of the bulb, all the illumination beams are concentrated at one focus, and the annular or loop fiber is mostly designed by the incident angle of the fiber exit port. The central concentration range of the ring lamp usually needs to coincide with the focal length of the objective lens of the stereo microscope. The working distance of the 1X objective lens of stereo microscope is generally about 80-100mm, which is the focus convergence position of most of the ring lamps. Because the external light source itself has a certain height, therefore the concentration center range of the ring light source is generally between 45-65mm. If below 45mm, shadow starts to appear in the middle; if higher than 65mm, the light in the middle will gradually diverge, and the brightness will decrease. When a small objective lens (such as 0.75X/0.5X) is selected, the lighting effect can basically be achieved; but when an objective lens with larger magnification is used and the working distance is relatively small (for example, 2X), the illumination center of the ring lamp will be a "black center", the effect of lighting will be relatively poor. Ring lights are usually stuck at the bottom of the nosepiece. Tighten the screws. In general, the electrical wires should be pulled to the back of the operating position, the switch or button should be placed on the side for easy operation. Generally, the ring light needs to be stuck with a lens frame at the bottom of the nosepiece. On the objective frame, there is a card slot for screw fastening. There are also microscope nosepieces that contains a card slot position of its own, and does not need an objective frame. |
Light AdjustableClose Λ
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low. When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed. In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter. Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken. If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position. Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking. |
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope. |
Adjustable CouplerClose Λ
On the coupler/C-mount-adapter, there is an adjustable device to adjust the focal length. |
Coupler for Microscope TypeClose Λ
Different coupler/C-mount-adapters are suitable for different microscopes. For some, some adapter accessories need to be replaced. See the applicable range of each coupler/C-mount-adapter for details. |
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification. Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification. For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm. The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece. Some adapters are designed without a lens, and their optical magnification is considered 1X. |
C/CS-Mount CouplerClose Λ
At present, the coupler/C-mount adapter generally adopts the C/CS-Mount adapter to match with the industrial camera. For details, please refer to "Camera Lens Mount". |
HDMI CameraClose Λ
The camera outputs digital signals, which are output to the display through the HDMI adapter. There are usually two types of HDMI adapters, namely, HDMI A type adapter, and HDMI Mini type adapter. |
CMOSClose Λ
CMOS, or complementary metal oxide semiconductor. Both CMOS and CCD sensors have their own respective advantages and disadvantages. As a kind of photoelectric conversion sensor, among the current cameras, CMOS is relatively more widely used. |
Image Sensor SizeClose Λ
The size of the CCD and CMOS image sensors is the size of the photosensitive device. The larger the area of the photosensitive device, the larger the CCD/CMOS area; the more photons are captured, the better the photographic performance; the higher the signal-to-noise ratio, the larger the photosensitive area, and the better the imaging effect. The size of the image sensor needs to match the size of the microscope's photographic eyepiece; otherwise, black borders or dark corners will appear within the field of view of observation. |
Camera Maximum PixelsClose Λ
The pixel is determined by the number of photosensitive elements on the photoelectric sensor of the camera, and one photosensitive element corresponds to one pixel. Therefore, the more photosensitive elements, the larger the number of pixels; the better the imaging quality of the camera, and the higher the corresponding cost. The pixel unit is one, for example, 1.3 million pixels means 1.3 million pixels points, expressed as 1.3MP (Megapixels). |
Camera ResolutionClose Λ
Resolution of the camera refers to the number of pixels accommodated within unit area of the image sensor of the camera. Image resolution is not represented by area, but by the number of pixels accommodated within the unit length of the rectangular side. The unit of length is generally represented by inch. |
Camera Signal Output PortClose Λ
Digital signals output: USB 2.0, USB3.0; 15 Pin VGA; Firewire Port; HDMI; VGA; Camera Link etc. Analog signal output: BNC; RCA; Y-C etc. In addition, some cameras store and output images in the form of a memory card. Usually, industrial cameras often have several output modes on one camera for convenience purposes. |
Camera Lens MountClose Λ
Industrial camera adapters are usually available in three types: 1. C-Mount: 1" diameter with 32 threads per inch, flange back intercept 17.5mm. 2. CS-Mount: 1" diameter with 32 threads per inch, flange back intercept 12.5mm. CS-Mount can be converted to a C-Mount through a 5mm spacer, C-mount industrial camera cannot use the CS-mount lens. 3. F-Mount: F-mount is the adapter standard of Nikon lens, also known as Nikon mouth, usually used on large-sized sensor cameras, the flange back intercept is 46.5mm. |
Transmission Frame RateClose Λ
Frame rate is the number of output of frames per second, FPS or Hertz for short. The number of frames per second (fps) or frame rate represents the number of times the graphics process is updated per second. Due to the physiological structure of the human eye, when the frame rate of the picture is higher than 16fps, it is considered to be coherent, and high frame rate can make the image frame more smooth and realistic. Some industrial inspection camera applications also require a much higher frame rate to meet certain specific needs. The higher the resolution of the camera, the lower the frame rate. Therefore, this should be taken into consideration during their selection. When needing to take static or still images, you often need a large resolution. When needing to operate under the microscope, or shooting dynamic images, frame rate should be first considered. In order to solve this problem, the general industrial camera design is to display the maximum frame rate and relatively smaller resolution when viewing; when shooting, the maximum resolution should be used; and some cameras need to set in advance different shooting resolutions when taking pictures, so as to achieve the best results. |
White BalanceClose Λ
White balance is an indicator that describes the precision of white color generated in the image when the three primary colors of red, green and blue are mixed, which accurately reflects the color condition of the subject. There are manual white balance and automatic white balance. White balance of the camera is to "restore white objects to white color under any light source." The chromatic aberration phenomenon occurred under different light sources is compensated by enhancing the corresponding complementary color. Automatic white balance can generally be used, but under certain conditions if the hue is not ideal, options of other white balance may be selected. |
Camera CrosshairsClose Λ
Camera crosshairs refers to the preset reference line within the camera, which is used to calibrate various positions on the display. The most commonly used is the crosshair, which is to determine the center position of the camera image, and it is very important in measurement. Some cameras also have multiple crosshairs that can be moved to quickly detect and calibrate the size of the object being viewed. Some crosshairs can also change color to adapt to different viewing backgrounds. |
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Optical Data
Microscope Optical Data Sheet | ||||||||
P/N | Objective | Objective Working Distance | Eyepiece | |||||
SZ05033211 (10X Dia. 20mm) | SZ19013211 (10X Dia. 20mm) | SZ19041153 (10X Dia. 20mm) | ||||||
Magnification | Field of View(mm) | Magnification | Field of View(mm) | Magnification | Field of View(mm) | |||
SZ19044211 | 0.5X | 165mm | 3.5-25X | 8-57.14mm | 3.5-25X | 8-57.14mm | 3.5-25X | 8-57.14mm |
SZ19044311 | 0.75X | 117mm | 5.25-37.5X | 5.33-38.1mm | 5.25-37.5X | 5.33-38.1mm | 5.25-37.5X | 5.33-38.1mm |
SZ19041153 | 1X | 103mm | 7-50X | 4-28.57mm | 7-50X | 4-28.57mm | 7-50X | 4-28.57mm |
SZ19044611 | 2X | 30mm | 14-100X | 2-14.29mm | 14-100X | 2-14.29mm | 14-100X | 2-14.29mm |
1. Magnification=Objective Optical Magnification * Body Magnification * Eyepiece Optical Magnification | ||||||||
2. Field of View=Eyepiece Field of View /(Objective Optical Magnification*Body Magnification) | ||||||||
3. The Darker background items are Standard items, the white background items are optional items. |
Video Microscope Optical Data Sheet | |||
P/N | Objective | Coupler | |
SZ05036133 (0.5X) | SZ19046131 (1X) | ||
Magnification | Magnification | ||
SZ19044211 | 0.5X | 0.18-1.25X | 0.35-2.5X |
SZ19044311 | 0.75X | 0.26-1.88X | 0.52-3.75X |
SZ19041153 | 1X | 0.35-2.5X | 0.7-5X |
SZ19044611 | 2X | 0.7-5X | 1.4-10X |
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification |
Camera Image Sensor Specifications | |||
No. | Camera Image Sensor Size | Camera image Sensor Diagonal | |
(mm) | (inch) | ||
1 | 1/4 in. | 4mm | 0.157" |
2 | 1/3 in. | 6mm | 0.236" |
3 | 1/2.8 in. | 6.592mm | 0.260" |
4 | 1/2.86 in. | 6.592mm | 0.260" |
5 | 1/2.7 in. | 6.718mm | 0.264" |
6 | 1/2.5 in. | 7.182mm | 0.283" |
7 | 1/2.3 in. | 7.7mm | 0.303" |
8 | 1/2.33 in. | 7.7mm | 0.303" |
9 | 1/2 in. | 8mm | 0.315" |
10 | 1/1.9 in. | 8.933mm | 0.352" |
11 | 1/1.8 in. | 8.933mm | 0.352" |
12 | 1/1.7 in. | 9.5mm | 0.374" |
13 | 2/3 in. | 11mm | 0.433" |
14 | 1/1.2 in. | 12.778mm | 0.503" |
15 | 1 in. | 16mm | 0.629" |
16 | 1/1.1 in. | 17.475mm | 0.688" |
Digital Magnification Data Sheet | |||||||||
Image Sensor Size | Image Sensor Diagonal size | Monitor | |||||||
Screen Size (11.6in) | Screen Size (10in) | Screen Size (11.6in) | Screen Size (13.3in) | Screen Size (11.6in) | Screen Size (21.5in) | Screen Size (11.6in) | Screen Size (21.5in) | ||
Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | Digital Zoom Function | ||
1/2.86 in. | 6.592mm | 44.7 | 38.5 | 44.7 | 51.2 | 44.7 | 82.8 | 44.7 | 82.8 |
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size |
Microscope Optical and Digital Magnifications Data Sheet | ||||||||||
Objective | Coupler | Camera | Monitor | Video Microscope Optical Magnifications | Digital Zoom Function | Total Magnification | Field of View (mm) | |||
PN | Magnification | PN | Magnification | Image Sensor Size | Image Sensor Diagonal size | Screen Size | ||||
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.18-1.25X | 44.7 | 8.05-55.88X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.18-1.25X | 82.8 | 14.9-103.5X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.18-1.25X | 44.7 | 8.05-55.88X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.18-1.25X | 82.8 | 14.9-103.5X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.18-1.25X | 44.7 | 8.05-55.88X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 10in | 0.18-1.25X | 38.5 | 6.93-48.12X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.18-1.25X | 44.7 | 8.05-55.88X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 13.3in | 0.18-1.25X | 51.2 | 9.22-64X | 5.27-36.62mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 10in | 0.35-2.5X | 38.5 | 13.48-96.25X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 13.3in | 0.35-2.5X | 51.2 | 17.92-128X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.35-2.5X | 82.8 | 28.98-207X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19044211 | 0.5X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.35-2.5X | 82.8 | 28.98-207X | 2.64-18.83mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.52-3.75X | 44.7 | 23.24-167.62X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.52-3.75X | 82.8 | 43.06-310.5X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.26-1.88X | 44.7 | 11.62-84.04X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 13.3in | 0.26-1.88X | 51.2 | 13.31-96.26X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.26-1.88X | 44.7 | 11.62-84.04X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.26-1.88X | 82.8 | 21.53-155.66X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.26-1.88X | 44.7 | 11.62-84.04X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.26-1.88X | 82.8 | 21.53-155.66X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.52-3.75X | 44.7 | 23.24-167.62X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.52-3.75X | 82.8 | 43.06-310.5X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.52-3.75X | 44.7 | 23.24-167.62X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 10in | 0.52-3.75X | 38.5 | 20.02-144.38X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.52-3.75X | 44.7 | 23.24-167.62X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 13.3in | 0.52-3.75X | 51.2 | 26.62-192X | 1.76-12.68mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.26-1.88X | 44.7 | 11.62-84.04X | 3.51-25.35mm |
SZ19044311 | 0.75X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 10in | 0.26-1.88X | 38.5 | 10.01-72.38X | 3.51-25.35mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.35-2.5X | 82.8 | 28.98-207X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 10in | 0.35-2.5X | 38.5 | 13.48-96.25X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 13.3in | 0.35-2.5X | 51.2 | 17.92-128X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.35-2.5X | 44.7 | 15.64-111.75X | 2.64-18.83mm |
SZ19041153 | 1X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.35-2.5X | 82.8 | 28.98-207X | 2.64-18.83mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.7-5X | 82.8 | 57.96-414X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 0.7-5X | 82.8 | 57.96-414X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 10in | 0.7-5X | 38.5 | 26.95-192.5X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19041153 | 1X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 13.3in | 0.7-5X | 51.2 | 35.84-256X | 1.32-9.42mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 1.4-10X | 44.7 | 62.58-447X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 13.3in | 1.4-10X | 51.2 | 71.68-512X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 1.4-10X | 44.7 | 62.58-447X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 1.4-10X | 82.8 | 115.92-828X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 1.4-10X | 44.7 | 62.58-447X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 21.5in | 1.4-10X | 82.8 | 115.92-828X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 1.4-10X | 44.7 | 62.58-447X | 0.66-4.71mm |
SZ19044611 | 2X | SZ19046131 | 1X | 1/2.86 in. | 6.592mm | 10in | 1.4-10X | 38.5 | 53.9-385X | 0.66-4.71mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.7-5X | 82.8 | 57.96-414X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 10in | 0.7-5X | 38.5 | 26.95-192.5X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 13.3in | 0.7-5X | 51.2 | 35.84-256X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 11.6in | 0.7-5X | 44.7 | 31.29-223.5X | 1.32-9.42mm |
SZ19044611 | 2X | SZ05036133 | 0.5X | 1/2.86 in. | 6.592mm | 21.5in | 0.7-5X | 82.8 | 57.96-414X | 1.32-9.42mm |
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification | ||||||||||
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications |
Contains | |||||||||||||||||||||||||
Parts Including | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Product Instructions/Operation Manual | 1pc |
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 39x24x36cm (15.354x9.449x14.173″) |
Packaging Dimensions(2) | 44.5x32.5x23cm (17.520x12.795x9.055″) |
Packaging Dimensions(3) | 28x23x7cm (11.024x9.055x2.756″) |
Packaging Dimensions(4) | 33x24.5x9cm (12.992x9.646x3.543″) |
Packaging Dimensions(5) | 25x21x6cm (9.843x8.268x2.362″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Expanded Polystyrene |
Gross Weight | 7.55kg (16.64lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Cardboard Box |
Transportation Carton Dimensions(1) | 39x24x36cm (15.354x9.449x14.173″) |
Transportation Carton Dimensions(2) | 44.5x32.5x23cm (17.520x12.795x9.055″) |
Transportation Carton Dimensions(3) | 28x23x7cm (11.024x9.055x2.756″) |
Transportation Carton Dimensions(4) | 33x24.5x9cm (12.992x9.646x3.543″) |
Transportation Carton Dimensions(5) | 25x21x6cm (9.843x8.268x2.362″) |
Total Gross Weight of Transportation(kilogram) | 7.55 |
Total Gross Weight of Transportation(pound) | 16.64 |
Quantity of One Transportation Carton | 5pc |