2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital

Pre-Order. Place your order and we’ll email you once we have an estimated delivery date.

Log in for pricing

Write a Review
SKU:
Ideal-TEK-SCOPE-PLUS-Digital
Condition:
New
Warranty:
5/1 Years
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
  • 2.0 Megapixels 460X LED Reflection Light ESD Safe Digital Microscope Ideal-TEK-SCOPE-PLUS-Digital
Instruction Manual
TEK-SCOPE-PLUS_User-Manual.pdf

Quick Overview
Finite. Total Magnification: 460X. Illumination Type: LED Reflection Light. 2.0 Megapixels. USB 2.0. Input Voltage: DC 12V. ESD Safe.

Ideal-TEK-SCOPE-PLUS-Digital Digital Microscope
Optical System Specifications
Optical SystemFinite
Total Magnification460X
System Working Distance310mm
Microscope Illumination System
Illumination TypeLED Reflection Light
USB Digital Camera
Image Sensor Size1/2.8 in.
Camera Maximum Pixels2.0 Megapixels
Camera Resolution1920x1080
Camera Signal Output PortUSB 2.0
Power Supply
Input VoltageDC 12V
Other Parameters
ESD SafeESD Safe
Net Weight4.50kg (9.92lbs)

 


Technical Info

Instructions
Digital MicroscopeClose Λ
Digital microscope is the general term for microscope that can convert an optical image into a digital image, and usually does not specifically refer to a certain type of microscope. It should be noted however that most microscopes can be mounted with cameras and display devices to change to digital microscope.
Microscopes in the visible range, from the digital imaging point of view, all use CCD or CMOS sensors to image the optical signal as an electric signal on a computer or display. However, the difference between various kinds of digital microscopes mainly comes from the optical microscope itself, so it is necessary to look at the imaging effect and function of the optical part in order to select the type of digital microscope.

From the classification point of view, digital microscopes can be divided into: digital biological microscopes, digital stereo microscopes, etc. It should be noted that due to the variety of lenses, ordinary lenses or microscopes, if mounted with a digital camera, can all become a digital microscope.

At present, the trend of digital microscopes is not only to present simple digital images, but to collect, process and analyze images through back-end software, especially for image measurement, comparison, judgment, and large-format scanning and splicing, and three-dimensional synthesis and so on, these aspects have been widely developed and applied.
FiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object.
When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions.
In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller.

Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance.
When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens.
USB Digital CameraClose Λ
What the camera outputs are digital signals, which are output to the computer via the USB adapter.
There are two kinds of popular USB adapters popular on the market, namely USB2.0 and USB3.0. Both kinds of adapters need different data lines to work.
Image Sensor SizeClose Λ
The size of the CCD and CMOS image sensors is the size of the photosensitive device. The larger the area of the photosensitive device, the larger the CCD/CMOS area; the more photons are captured, the better the photographic performance; the higher the signal-to-noise ratio, the larger the photosensitive area, and the better the imaging effect.
The size of the image sensor needs to match the size of the microscope's photographic eyepiece; otherwise, black borders or dark corners will appear within the field of view of observation.
Camera Maximum PixelsClose Λ
The pixel is determined by the number of photosensitive elements on the photoelectric sensor of the camera, and one photosensitive element corresponds to one pixel. Therefore, the more photosensitive elements, the larger the number of pixels; the better the imaging quality of the camera, and the higher the corresponding cost.
The pixel unit is one, for example, 1.3 million pixels means 1.3 million pixels points, expressed as 1.3MP (Megapixels).
Camera ResolutionClose Λ
Resolution of the camera refers to the number of pixels accommodated within unit area of the image sensor of the camera. Image resolution is not represented by area, but by the number of pixels accommodated within the unit length of the rectangular side. The unit of length is generally represented by inch.
Camera Signal Output PortClose Λ
Digital signals output: USB 2.0, USB3.0; 15 Pin VGA; Firewire Port; HDMI; VGA; Camera Link etc.
Analog signal output: BNC; RCA; Y-C etc.
In addition, some cameras store and output images in the form of a memory card. Usually, industrial cameras often have several output modes on one camera for convenience purposes.
ESD SafeClose Λ
Static electricity is a charge that is at static or non-flowing state, and static electricity is formed when charges accumulate on an object or surface.
Static electricity can cause malfunction or mis-opeartion of electronic equipment, resulting in electromagnetic interference. In the electronics industry, static electricity can break down integrated circuits and precision electronic components, causing components to age, and can also absorb dust, causing contamination of integrated circuits and semiconductor components, and reducing production yield. In the plastics industry, static electricity can cause film or membrane not wining up uniformly, film and CD plastic discs contaminated with dust, thereby affecting quality. In industrial production, especially in electronic production and processing and inflammable and explosive production sites, electrostatic protection should be taken seriously.

ESD means "electro-static discharge." For the methods of ESD treatment with respect to microscope and components, electrical conductivity of the metal should be utilized on the one hand, and on the other hand, electrostatic materials, electrostatic coating and other methods of treatment should be adopted to solve the electrostatic problem.
Electrostatic coating is to apply coat that can prevent static electricity. It has electrostatic discharge, dust-proof, mildew-proof, wear-resistant, acid and alkali resistance and other characteristics. The surface of the coating does not generate static electricity or the static electricity is discharged to the safe place through the conductor row.
On some components, electrostatic materials may be applied, such as the microscope knob handle, insulation mat, septum, microscope cover etc.
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Ancillary Packaging MaterialsPlastic
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton

Related Products