1X Focus Distance 50mm Laser Video Microscope Body (FS70L4) Mitutoyo-378-187-1

Pre-Order. Place your order and we’ll email you once we have an estimated delivery date.

Log in for pricing

Write a Review
SKU:
Mitutoyo-378-187-1
Condition:
New
  • 1X Focus Distance 50mm  Laser Video Microscope Body (FS70L4) Mitutoyo-378-187-1
  • 1X Focus Distance 50mm  Laser Video Microscope Body (FS70L4) Mitutoyo-378-187-1
  • 1X Focus Distance 50mm  Laser Video Microscope Body (FS70L4) Mitutoyo-378-187-1
  • 1X Focus Distance 50mm  Laser Video Microscope Body (FS70L4) Mitutoyo-378-187-1


Quick Overview
Infinite. Body Magnification: 1X. Body Mounting Size for Stand: 4-M4 Screw Holes, Depth 6mm, Screw Distance L126.5mm W63.5mm. Infinite. For Compound Microscope. Eye Tube Inner Diameter: Dia. 30mm. 0/100 Switch Trinocular. Coaxial Coarse/Fine Focus. Focus Distance: 50mm .

Mitutoyo-378-187-1 Laser Video Microscope Body (FS70L4)
Laser Video Zome Body
Body Optical SystemInfinite
Body Magnification1X
Body Mounting Size for Stand4-M4 Screw Holes, Depth 6mm, Screw Distance L126.5mm W63.5mm
Body Mount Type for CouplerFastening Screw
Body Mount Size for Coupler Dia. 38mm
Using Laser Wavelength266nm, 532nm
Eye Tube Optical SystemInfinite
Eye Tube TypeFor Compound Microscope
Eye Tube Adjustment ModeSiedentopf
Erect/Inverted ImageErect image
Eye Tube RotatableFixed
Interpupillary Adjustment51-76mm
Eye Tube Inner Diameter Dia. 30mm
Image Port Switch Mode0/100 Switch Trinocular
Objective Screw ThreadM26x1/36 in.
Focus ModeManual
Coarse/Fine Focus TypeCoaxial Coarse/Fine Focus
Focus Distance50mm
Fine Focus Travel DistanceSame as Focus Distance
Coarse Focus Distance per Rotation3.8mm
Fine Focus Distance per Rotation0.1mm
MaterialMetal
ColorBlack
Net Weight6.70kg (14.77lbs)

 


Technical Info

Instructions
Scope Body PartsClose Λ
Nosepiece, also known as revolving nosepiece, can be mounted with several objective, and one of which in turn can be switched to the microscope optical axis for use.
Nosepiece has different configurations, namely, single, triple, quadruple, and quintuple. Each objective has a ball buckle at its position to ensure that the objective is in the exact fixed position of the optical axis. Since any one set of objectives has the same parfocal distance, so when the objective is switched between high and low magnifications for observation, it is almost unnecessary to perform again the focusing operation.
Nosepiece can be divided into two types, namely, inward nosepiece and outward nosepiece, depending on the positional direction. After switching, the tube of inward nosepiece is inclined to the side of the microscope body, which can save people's operating space and prevents it from hitting the lens.

In general, after the objective is mounted onto the nosepiece, no special coaxial processing is required. If necessary, remove the nosepiece, and adjust the position of the end point screw on the dovetail rail behind the nosepiece. If the objective is still off-axis, adjust the optical axis of the condenser to match the optical axis center of the objective.
In the use of microscope, if one set of objective cannot be parfocal, there are many reasons for the problem, but it may be that the nosepiece or the set of objective itself cannot guarantee parfocalness due to problems of processing precision. In this case, after confirming that the high and low magnifications of the objectives at both ends are in focus, adjust the objective of the middle magnification, and usually try to add a thin "shims" to correct.
For normal switching of the objective, it is necessary to push the nosepiece instead of pushing and pulling the objective to prevent the objective and the nosepiece from deviating from the optical axis or loosening, so as to avoid image out of focus or damage.
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
SiedentopfClose Λ
For siedentopf eyetube, when changing the interpupillary distance, it requires two hands pushing or pulling the two eyetubes left and right simultaneously, and the two eyepiece tubes or eyetubes will change their position at the same time.
Erect/Inverted ImageClose Λ
After imaging through a set of objective lenses, the object observed and the image seen by the human eye is inverted. When the observed object is manipulated, move the specimen or object, the image will move in the opposite direction in the field of view. Most of the biological microscopes are reversed-phase designs.
When needing to operate works with accurate direction, it is necessary to design it into a forward microscope. Generally stereo microscopes and metallurgical microscopes are all of erect image design.
When observing through the camera and display, the erect and inverted image can be changed by the orientation of the camera.
Interpupillary AdjustmentClose Λ
The distance between the two pupils of the human eye is different. When the image of exit pupil of the two eyepieces of the microscope are not aligned with the entry pupil of the eye, the two eyes will see different images, which can cause discomfort.
Adjust the distance between the two eyepieces, to accommodate or adapt to the pupil distance of the observer's eyes. The adjustment range is generally between 55-75mm.
Image Port Switch ModeClose Λ
The third eyepiece splitting in the trinocular microscope is to borrow one of the two sets of eyepiece optical paths as the photographic light path. The beam split prism or beam splitter can reflect part of the image light to the eyepiece, and part passes through to the third eyepiece photographic light path, such a trinocular microscope is called trinocular simultaneous imaging microscope, or true-trinocular.
The beam split prism or beam splitter of the trinocular simultaneous imaging microscope or true-trinocular often has different splitting modes, such as 20/80 and 50/50, etc. Usually, the former is the luminous flux ratio of the eyepiece optical path, and the latter is the luminous flux ratio of the photographic optical path.

The advantage of true-trinocular is that, the real three optical paths can be imaged at the same time, and are not affected by the simultaneous use of the eyepiece observation and the photographic optical path (display). The disadvantage is that, because of the reason of the splitting, the image light of the photography is only a part. In theory, the image effect will be affected, and the effect is more obvious in the binocular eyepiece observation. If viewed closely, one will find that the eyepiece of the light path is relatively dark. However, in the current optical design and materials, the impact on the actual work is not very big, especially in the observation of low magnification objective lens, it has basically no effect at all, and therefore used by many people.
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different.
In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably.
One is the British system: RMS type objective thread: 4/5in X 1/36in,
One is metric: M25 X 0.75mm thread.
Coaxial Coarse/Fine FocusClose Λ
Focus mechanism, the coarse / fine focus knobs are in a coaxial center position, they are connected together by a gear reduction mechanism, which can be coarse/ fine focus adjusted at any time during the entire stroke.
Generally, the coarse focus diameter is relatively big, which is inside close to the body of the microscope, and the fine focus diameter is relatively small, which is outside of the body of the microscope. Coarse focus adjustment is used to quickly move to find the image, and the fine focus adjustment is used to finely adjust the clarity of the image. Generally, the minimum read value of the fine focus adjustment can be accurate to 1 micron, and single circle can reach a stroke of 0.1 mm. Mechanical fine focus plays a very important role in the accuracy of the microscope resolution. If the fine focus accuracy is not enough, or cannot be stabilized at the sharpest focusing position, the image will be out of focus and become blurred.
The tightness of coarse focus is generally adjustable. Generally, on one side of the knob (usually on the right side), there is a textured knob on the inside of the coarse knob, which is tightened if rotated clockwise; and loosened if rotated counterclockwise.

In the process of focusing, direct focusing should not be on the objective of high magnification; instead, find the object of low magnification first, and gradually adjust to high magnification. Usually, the coarse focus knob is rotated first, and when the objective lens is gradually lowered or the platform is gradually rising, find the object, and then adjust with the fine focus, until the object image in the field of view is clear. Generally, when changing from low magnification to high magnification objective, one only need to slightly adjust the fine focus knob to make the object image clear. During the process, the distance between the objective and the specimen should be observed from the side, to understand the critical value of the object distance between the lens and the specimen.
When using a high magnification objective, since the distance between the objective and the specimen is very close, after the image is found, the coarse focus knob cannot generally be used, and the fine focus knob can only be used to avoid excessive distance of movement, damaging the objective and the slide or specimen.

By using the characteristics of the fine focus, the height or thickness of the observed object can be roughly measured under the microscope, such as measuring the thickness of the cell or tissue, the thickness of the cover glass, and the thickness of small objects that cannot be measured by various conventional measuring instruments.
Method of measurement: place the object to be measured at the center of the field of view of the stage. After the image is clearly focused, try to use the highest magnification objective as much as possible, and align the adapter of the top feature point of the object to be measured. After adjusting clear, record the position of scale of the fine focus knob. Then, move the objective down to the adapter of the lowest feature point of the object to be measured, and record the position of scale of the fine focus knob. Then, according to the above fine focus, record the number of rounds of movement, and based on the parameters of conversion of each round into stroke (see the microscope fine focus knob parameters), the number of rounds is converted into the total stroke, which is the height of the object to be measured. If it is repeated a few times for average, a more accurate measurement can be obtained.

Related Products