1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013

Temporarily out of stock. Place your order and we’ll email you once we have an estimated delivery date.

Log in for pricing

Write a Review
SKU:
MZ02110013
Condition:
New
Warranty:
5/1 Years
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013
  • 1-6X 3.0 Megapixels CMOS UV FREE LED Light Post Stand Video Zoom Microscope MZ02110013


Quick Overview
Infinite. Total Magnification: 1-6X. Zoom Ratio: 6:1. Body Mounting Size for Stand: Dia. 47mm. Post Stand. UV FREE LED Light. Light Adjustable. Ring Light. CMOS. 3.0 Megapixels. USB 3.0. Windows XP/Vista/7/8/10/11/OSX/Linux 2.6 and above. Input Voltage: AC 96-265V 50/60Hz. The optical system lens is provided by Navitar, and other accessories such as Stands, camera and light source are provided by our company.

MZ02110013 Video Zoom Microscope
Optical System Specifications
Optical SystemInfinite
System Optical Magnification1-6X
Total Magnification1-6X
Video Monocular Zoom Body
Navitar Zoom 7000 Macro Video Zoom Lens
Body Optical SystemInfinite
Body Magnification1-6X
Zoom Ratio6:1
Zoom Operating ModeWith the Nosepiece
Body Mounting Size for Stand Dia. 47mm
For Camera Sensor SizeUnder 2/3 in.
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.58kg (1.28lbs)
Ring Adapter
Ring Adapter For FS1205 Stereo Microscope
Ring Adapter Outer Diameter Dia. 52mm
Ring Adapter Screw ThreadM52x1mm
Surface TreatmentPolished Chrome Finish
MaterialAluminum
ColorSilver
Net Weight0.02kg (0.04lbs)
Dimensions Dia. 52x18mm
Applied FieldFor ML02241521 LED Ring Light, ML19111111, ML46111311 Fluorescence Ring Light
Applied ToFor FS12050125 Microscope
Post Stand
76mm Post Stand
Stand TypePost Stand
Holder Adapter Type Dia. 76mm Scope Holder
Vertical Post Height305mm
Maximum Vertical Post Extended Length150mm
Vertical Post Diameter Dia. 32mm
Base TypeTable Base
Base ShapeRectangle
Base Mounting SizeM29x1.5-6h
Base Dimensions320x305x16mm
Focus ModeManual
Focus Distance50mm
Coarse Focus Distance per Rotation21mm
Focusing Knob Tightness AdjustableTightness Adjustable
Center Distance from Hole to Scope Holder150mm
Surface TreatmentPlastic Spray Coating
MaterialMetal
ColorWhite
Net Weight3.25kg (7.17lbs)
Dimensions320x305x474mm (12.598x12.008x18.661 in. )
Donut Adapter
47/76mm Donut
Donut Adapter TypeScope Mounting Converter
Donut Adapter Size for Scope Mounting Dia. 47mm
Donut Adapter Size for Scope Holder Dia. 76mm
Donut Adapter Height20mm
Surface TreatmentElectroplating Black
MaterialMetal
ColorBlack
Net Weight0.18kg (0.40lbs)
Applied FieldFor Navitar Zoom Series Lens
Microscope Plate
95x5mm Black White Plate
Plate TypeBlack White Plate
Plate Size Dia. 95x5mm
MaterialPlastic (ABS)
ColorBlack, White
Applied FieldFor ST0201, ST0501, ST1901, ST0801, ST0802 Series Post Stand. ST0203, ST0204 ST0403 Series Track Stand
Fiber Optic Light Source
24W UV Free LED Fiber Optic Illuminator
Light Source TypeUV FREE LED Light
Power Supply AdjustableLight Adjustable
Power Box Light PortSingle Hole
Fiber Cable Adapter Size5/8 in. End Adapter
Power Box Panel Meter DisplayPointer Panel Meter/Scale
Power Box Cooling SystemFan Cooling system
Power Box Dimensions185x150x95mm
Bulb Color (Wavelength)UV FREE
Output Power24W
Input VoltageAC 96-265V 50/60Hz
Output VoltageDC 24V
Power Cord Connector TypeUSA 3 Pins
Surface TreatmentBlack Oxide Finish
MaterialMetal
ColorBlack
Net Weight3.20kg (7.05lbs)
Optical Fiber Light Guide
Annular Ring Light Guide (ID58x1000mm)
Ring I.D. SizeRing I.D. Dia. 58mm
Ring Light Working Distance Range65-68mm
Optical Fiber Cable TypeRing Light
Fiber Light Output Port Size56mm
Fiber Light Input Port Size Dia. 10mm
Fiber Cable Input Port Adapter Size5/8 in. End Adapter
Pipe MaterialPVC
Optical Fiber Cable Length1000mm
Pipe Diameter Dia. 15.5mm
Pipe ColorBlack
Fiber Cable Mounting TypeFastening Screw
Surface TreatmentBlack Oxide Finish
MaterialMetal (Aluminum Alloy)
ColorBlack
Net Weight0.47kg (1.04lbs)
USB Digital Camera
3M USB 3.0 CMOS Color Digital Camera
Image SensorCMOS
Image Sensor Size1/3 in.
Image Sensor Diagonal size6mm (0.236 in. )
Pixel Size2.2x2.2μm
Camera Maximum Pixels3.0 Megapixels
Camera Resolution2048x1536
Camera Signal Output PortUSB 3.0
Camera Locking Screw Size1/4-20 in.
Camera Lens MountC-Mount
Transmission Frame Rate27.3fps@2048x1534, 53.3fps@1024x770
White BalanceManual/Auto
Sensitivity1.9V/lux-sec@550nm
Gain ControlAdjustable
Exposure ControlManual/Auto
Camera CrosshairsGrid
Line ColorUser Defined
Capture FunctionYes
Image Capture Output FormatTIFF/JPG/BMP/PNG
Measurement FunctionYes
Video Output FormatWMV/H264/AVI
LanguageEnglish/French/German/Indonesian/Japanese/Polish/Russian/Simplified Chinese/traditional Chinese/Turkish
System RequirementWindows XP/Vista/7/8/10/11/OSX/Linux 2.6 and above
Driver InstallationDriver free
APINative C/C++, C#, DirectShow, Twain Control API
Camera Operation Temperature-10~50°C (14~122°F)
Camera Operation Humidity30-80%
Camera Housing MaterialMetal
Camera Housing Size68x68x45mm
Camera Housing ColorBlack
Surface TreatmentBlack Oxide Finish
MaterialMetal
ColorBlack
Net Weight0.39kg (0.86lbs)
CalibrationYes
Image StitchingYes
Other Parameters
NotesThe optical system lens is provided by Navitar, and other accessories such as Stands, camera and light source are provided by our company

 


Technical Info

Instructions
Video Zoom LensClose Λ
Video zoom lens, refers to microscope that has only one set of imaging optical paths. It can be considered as a set of dual optical path stereo microscopes. The magnification and multiple range of video zoom lens are usually the same as those of a stereo microscope, but because the objective lens is one, its optical imaging is flat, not stereoscopic.

It has been observed that as most of the parametric features are close to stereo microscopes, video zoom lens is then classified as stereo microscope. In fact, it lacks the most important "stereoscopic" imaging features. Compared with other compound microscopes such as biological metallurgical microscopes, the total optical magnification of video zoom lens is generally below 40X, which is the coverage of low magnification range that these microscopes do not have.

Most of the video continuous zoom lens is to observe the electronic image, not through the eyepiece, but through the camera.
Video zoom lens can have relatively more objective lens and photographic eyepiece multiples for selection. At the same time, video zoom lens can also be designed as parallel light so as to add even more configuration accessories, such as observation eyepieces, aperture diaphragms, coaxial illumination light sources, reticles, and nosepieces that can change the viewing angle and direction, etc.
Regarding accessories of video zoom lens such as the stands and light source etc., generally, all accessories of stereo microscope can be used. Therefore, video zoom lens combination is flexible, compact, with strong adaptability and low cost, suitable for use in industry, especially extensively used in the electronics industry.
InfiniteClose Λ
Microscopes and components have two types of optical path design structures.
One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope.
Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required.
The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects.

The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough.
Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective.
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object.
System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system.
Optical magnification = eyepiece multiple X objective lens/objective lens set

The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen.
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification.
When it is only optically magnified, the total magnification will be the optical magnification.

Total magnification = optical magnification X electronic magnification
Total magnification = (objective X photo eyepiece) X (display size / camera sensor target )
Video Monocular Zoom BodyClose Λ
Video monocular zoom body is a zoom body that has only one set of optical paths, and it is also the body of the video continuous zoom.
The upper end of the microscope body can be connected to the standard C-interface photo eyepiece, and then connected to the microscope camera; the lower end is the objective lens, and the objective lens of parallel structure is generally separated from the body, whereas the microscope body of finite structure is combined with the objective lens.
Some bodies of microscope have also a light source coaxial illumination device.
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4.
Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly.
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece.
For Camera Sensor SizeClose Λ
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear.
The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”.
Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect.
Ring AdapterClose Λ
Ring adapter is used for the nosepiece under the stereo microscope or the circular interface under the microscope objective, with appropriate threads to engage.
The main function of the ring adapter is to connect the ring light. Some microscopes have grooves on their nosepiece, which can directly clamp the ring light, but it can easily damage the surface of the nosepiece of the  appearance of the microscope, so it is more suitable to use an interface.
Some ring adapters have one or two grooves on them, and they are used to clamp screw of the ring lights.
There are also ring lights that are clamped on the Barlow lens of the microscope. If the lower end of the Barlow lens is threaded, an additional ring adapter can also be attached to clamp the ring light, so as to protect the surface of the objective.
Usually, the ring adapter has very fine mounting threads. When the objective/ring adapter needs to be mounted, the mounting should be careful. Align the position of the nosepiece for installation to keep it completely “flat”. When it is blocked, remove it and install again, do not force it in.
Post StandClose Λ
Post stand generally has relatively tall post. When the focus is adjusted, the focusing mechanism can slide up and down the post, the microscope is thus placed in an approximately focused position, and then the focusing mechanism makes fine and accurate adjustment. This kind of stand can move quickly, and is suitable for viewing objects with a higher height and bigger volume.
After the microscope is mounted, the microscope imaging center needs to be aligned with the center of the platen.
The focusing mechanism button on the post must be tightened to lock the guard ring device, and the microscope should be prevented from loosening and shaking when working. When it is necessary to adjust the height, hold the microscope and the focusing mechanism with one hand, then release the knob, adjust it to the proper position, lock the knob, then top the guard ring to the lower position of the focusing mechanism, and lock it tight. In particular, avoid accidental dropping of the microscope due to gravity, thereby damaging the microscope and the objects below.
Dia. 76mm Scope HolderClose Λ
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers.

Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use.
Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm.
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body.
Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen)
In general, after long-time use, the knob will be loose, and adjustment is necessary.
Donut AdapterClose Λ
Donut adapter is an adapter used to convert the scope holder of the microscope and the size of the microscope body. For different manufacturers and different types of microscopes, as well as different stands, their adapters are often different and not interchangeable. This type of donut adapter can be used to connect different microscope stands and microscope bodies, which is very convenient for interchange of different manufacturers and microscope models.
It is usually to use this adapter cable to fix it to the body of the microscope, which is equivalent to changing the fixed diameter of the microscope, and then placing it on the microscope stand.
Microscope PlateClose Λ
According to different objects to be observed, the appropriate platen should be selected. The microscope plate materials include black and white, black and white finish; transparent glass, frosted glass, metal, etc.
Standard stands are generally configured with a suitable microscope plate, but different plates may need to be purchased separately.
Black and white microscope plate are made of general plastics, and the different backgrounds in black and white make the object more prominent.
Finish microscope plate eliminates reflections during observation.
Transparent glass plate is used when observing transparent or translucent objects, and the use of transmitted light source is to make the light penetrate the object to be observed as much as possible.
Finish glass plate, with its rough glass surface, can make the transmitted light more uniform and create a diffusing effect, avoiding exposure of the light shadow of the filament directly onto to the observed object.
Metal plate, relatively more solid, is more suitable when it is necessary to operate and cut.
Microscope plate is generally round shaped, on one side of the base there is a spring clip. When installing, align the plate with the clamp and push it in, and then press down the other end, so that the plate is smoothly embedded in to the circular card slot of the bottom plate.
When removing, grab the other end of the clip, push and lift up the plate.
Fiber Optic Light SourceClose Λ
Fiber optic light source refers to an illuminating light source that does not contain or contains less spectrum of infrared heat radiation in a illuminating or light guiding body, for example, the popular LED light source, which is a typical illuminator fiber optic light source. In microscopic illumination, the optical fiber cold light source (commonly referred to as “cool light”) means that, after the illumination beam is transmitted through the optical fiber of the light guide body, the heat radiation is not brought to the light exit port, thereby achieving "cold light" effect.

The portion of the illuminating light source of the optical fiber has been conventionally illuminated with a halogen light source. In recent years, high-power LED lighting has been widely used. Although the bulb of halogen light source can generate a lot of heat radiation, because of its high brightness when emitting light, it belongs to full-band light, with good color reproduction and comfortable observation by human eye, and therefore is still irreplaceable in some applications.
Luminous light sources usually require a high-power light source to achieve strong light, therefore heat dissipation is very important. Whether it is a halogen light source or an LED light source, fan cooling is usually adopted.

Fiber optic lighting application has many advantages:
1. The thermal conductivity of the optical fiber is poor. When the light source (light bulb) emits light, the thermal radiation, after being separated by the optical fiber, is not transmitted to the object to be observed. So, while maintaining the wavelength and brightness of the light, it becomes "cold light". When using strong light, cold light may not damage the observed objects, especially in medical and biological applications.
2. Single light source can be transmitted through the optical fiber, and at the same time there are multiple light-emitting points with the same light-emitting characteristics. The light-emitting port can be arranged at different positions and angles, or made into different shapes, such as double-branch lighting, ring lighting, multi-point lighting etc.
3. The light source host and the light exit port illumination point are transmitted through the optical fiber, and therefore the host can be placed in a safe or suitable position without affecting the illumination position of the light exit port, so that there will be more flexibility in design and use.
4. The light exiting port illumination point is transmitted through the optical fiber, and it can filter freely the wavelength of the light at the light source position in the front end of the light entrance, increase the polarization effect, and adjust the brightness and darkness. For example, improve the contrast and contrast ratio of the details of the object to be observed through various color filters, filter out the ultraviolet and infrared light, and reduce damage to certain items..
5. In the light source host and optical fiber used in fiber optic lighting, the service life of the optical fiber can be decades, and the design separating the light source from the optical fiber makes the light source easy to repair and replace.
Light AdjustableClose Λ
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low.
When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed.
In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter.

Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken.
If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position.
Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking.
Optical Fiber Light GuideClose Λ
Optical fiber bundle for illumination, is referred to as optical fiber light guide for short.
Optical fiber light guide is a fiber core made of transparent material (typically, glass fiber is made of silicon dioxide). Around the fiber core, a cladding layer is formed, using a material having a refractive index lower than that of the fiber core, that is, if the refractive index of the fiber core and the cladding layer are n1 and n2, then n1 must be >n2. The transmission of the optical fiber makes use of the principle of total reflection of light. In this fiber core medium, light is to maintain its characteristics of optical waveform for transmission, wherein the fiber core portion of high refractive index is the main channel for light transmission, while the outer casing of low refractive index covers the entire fiber core. Since the core has a higher refractive index than the outer casing, total reflection occurs, and therefore light can be transmitted in the fiber core.

The core of the optical fiber is generally classified into glass fiber, quartz fiber, plastic fiber, and liquid core fiber etc.
Microscope illumination usually uses glass fiber, which can have better transmittance for light of different wavelengths. For glass fiber, its optical core material is multi-component optical glass with high refractive index, whereas its cladding material is optical glass with low refractive index. The commonly used multi-component glass formula include: sodium-borosilicate glass (Na-B-Si), potassium-borosilicate glass (K-B-Si), sodium-zinc aluminoborosilicate glass (Na-Zn-Al-B-Si), and the like.
Glass fiber, made of optical glass, has a much higher transparency than a ordinary set of glass, but still has a relatively high attenuation value, generally about 1dB/m.
The lighting fiber optic wire is very thin, and cannot be bent at a large angle. Generally, its minimum bending radius ≥30D (Min. bending radius ≥30D). Check the breaking of the fiber optic wire, you can use one side section to face the light, and the other side section to see the dark part. If there is too much break, it can’t be repaired, but the entire fiber be replaced.
USB Digital CameraClose Λ
What the camera outputs are digital signals, which are output to the computer via the USB adapter.
There are two kinds of popular USB adapters popular on the market, namely USB2.0 and USB3.0. Both kinds of adapters need different data lines to work.
CMOSClose Λ
CMOS, or complementary metal oxide semiconductor.
Both CMOS and CCD sensors have their own respective advantages and disadvantages. As a kind of photoelectric conversion sensor, among the current cameras, CMOS is relatively more widely used.
Image Sensor SizeClose Λ
The size of the CCD and CMOS image sensors is the size of the photosensitive device. The larger the area of the photosensitive device, the larger the CCD/CMOS area; the more photons are captured, the better the photographic performance; the higher the signal-to-noise ratio, the larger the photosensitive area, and the better the imaging effect.
The size of the image sensor needs to match the size of the microscope's photographic eyepiece; otherwise, black borders or dark corners will appear within the field of view of observation.
Camera Maximum PixelsClose Λ
The pixel is determined by the number of photosensitive elements on the photoelectric sensor of the camera, and one photosensitive element corresponds to one pixel. Therefore, the more photosensitive elements, the larger the number of pixels; the better the imaging quality of the camera, and the higher the corresponding cost.
The pixel unit is one, for example, 1.3 million pixels means 1.3 million pixels points, expressed as 1.3MP (Megapixels).
Camera ResolutionClose Λ
Resolution of the camera refers to the number of pixels accommodated within unit area of the image sensor of the camera. Image resolution is not represented by area, but by the number of pixels accommodated within the unit length of the rectangular side. The unit of length is generally represented by inch.
Camera Signal Output PortClose Λ
Digital signals output: USB 2.0, USB3.0; 15 Pin VGA; Firewire Port; HDMI; VGA; Camera Link etc.
Analog signal output: BNC; RCA; Y-C etc.
In addition, some cameras store and output images in the form of a memory card. Usually, industrial cameras often have several output modes on one camera for convenience purposes.
Camera Lens MountClose Λ
Industrial camera adapters are usually available in three types:
1. C-Mount: 1" diameter with 32 threads per inch, flange back intercept 17.5mm.
2. CS-Mount: 1" diameter with 32 threads per inch, flange back intercept 12.5mm.
CS-Mount can be converted to a C-Mount through a 5mm spacer, C-mount industrial camera cannot use the CS-mount lens.
3. F-Mount: F-mount is the adapter standard of Nikon lens, also known as Nikon mouth, usually used on large-sized sensor cameras, the flange back intercept is 46.5mm.
Transmission Frame RateClose Λ
Frame rate is the number of output of frames per second, FPS or Hertz  for short. The number of frames per second (fps) or frame rate represents the number of times the graphics process is updated per second.

Due to the physiological structure of the human eye, when the frame rate of the picture is higher than 16fps, it is considered to be coherent, and high frame rate can make the image frame more smooth and realistic. Some industrial inspection camera applications also require a much higher frame rate to meet certain specific needs.
The higher the resolution of the camera, the lower the frame rate. Therefore, this should be taken into consideration during their selection. When needing to take static or still images, you often need a large resolution. When needing to operate under the microscope, or shooting dynamic images, frame rate should be first considered. In order to solve this problem, the general industrial camera design is to display the maximum frame rate and relatively smaller resolution when viewing; when shooting, the maximum resolution should be used; and some cameras need to set in advance different shooting resolutions when taking pictures, so as to achieve the best results.
White BalanceClose Λ
White balance is an indicator that describes the precision of white color generated in the image when the three primary colors of red, green and blue are mixed, which accurately reflects the color condition of the subject. There are manual white balance and automatic white balance.
White balance of the camera is to "restore white objects to white color under any light source." The chromatic aberration phenomenon occurred under different light sources is compensated by enhancing the corresponding complementary color. Automatic white balance can generally be used, but under certain conditions if the hue is not ideal, options of other white balance may be selected.
Camera CrosshairsClose Λ
Camera crosshairs refers to the preset reference line within the camera, which is used to calibrate various positions on the display. The most commonly used is the crosshair, which is to determine the center position of the camera image, and it is very important in measurement. Some cameras also have multiple crosshairs that can be moved to quickly detect and calibrate the size of the object being viewed. Some crosshairs can also change color to adapt to different viewing backgrounds.
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection.
For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem.

 


Optical Data

 

Camera Image Sensor Specifications
No.Camera Image Sensor SizeCamera image Sensor Diagonal
(mm)(inch)
11/4 in. 4mm0.157"
21/3 in. 6mm0.236"
31/2.8 in. 6.592mm0.260"
41/2.86 in. 6.592mm0.260"
51/2.7 in. 6.718mm0.264"
61/2.5 in. 7.182mm0.283"
71/2.3 in. 7.7mm0.303"
81/2.33 in. 7.7mm0.303"
91/2 in. 8mm0.315"
101/1.9 in. 8.933mm0.352"
111/1.8 in. 8.933mm0.352"
121/1.7 in. 9.5mm0.374"
132/3 in. 11mm0.433"
141/1.2 in. 12.778mm0.503"
151 in. 16mm0.629"
161/1.1 in. 17.475mm0.688"



Contains  
Parts Including
PictureP/NProduct Name
FS12054911Ring Adapter For FS1205 Stereo Microscope
ML4921121124W UV Free LED Fiber Optic Illuminator
DC291111123M USB 3.0 CMOS Color Digital Camera
Navitar Zoom 7000Navitar Zoom 7000 Macro Video Zoom Lens
ST0201110276mm Post Stand
SA0208120447/76mm Donut
ML26913101Annular Ring Light Guide (ID58x1000mm)
Packing  
Packaging TypeCarton Packaging
Packaging MaterialCorrugated Carton
Packaging Dimensions(1)38x36x19cm (14.961x14.173x7.480″)
Packaging Dimensions(2)21x8.5x9cm (8.268x3.346x3.543″)
Packaging Dimensions(3)10.5x5.5x13cm (4.133x2.165x5.118″)
Packaging Dimensions(4)15x14.5x10cm (5.906x5.709x3.937″)
Packaging Dimensions(5)25.5x15.5x25.5cm (10.039x6.102x10.039″)
Packaging Dimensions(6)24.5x24.5x4cm (9.646x9.646x1.575″)
Inner Packing MaterialPlastic Bag
Ancillary Packaging MaterialsExpanded Polystyrene
Gross Weight9.66kg (21.30lbs)
Minimum Packaging Quantity1pc
Transportation CartonCarton Packaging
Transportation Carton MaterialCorrugated Carton
Transportation Carton Dimensions(1)38x36x19cm (14.961x14.173x7.480″)
Transportation Carton Dimensions(2)21x8.5x9cm (8.268x3.346x3.543″)
Transportation Carton Dimensions(3)15.2x15.2x15.2cm (6x6x6″)
Transportation Carton Dimensions(4)15x14.5x10cm (5.906x5.709x3.937″)
Transportation Carton Dimensions(5)25.5x15.5x25.5cm (10.039x6.102x10.039″)
Transportation Carton Dimensions(6)24.5x24.5x4cm (9.646x9.646x1.575″)
Total Gross Weight of Transportation(kilogram)9.66
Total Gross Weight of Transportation(pound)21.30
Quantity of One Transportation Carton6pc

Related Products