Quick Overview
Infinite. Total Magnification: 0.58-7X. 1X Built-in Objective. Standard Coupler: 1X. Zoom Ratio: 1:12. Body Mounting Size for Stand: Dia. 45.3mm. Post Stand. LED Light. Light Adjustable. CMOS. 2.0 Megapixels. Windows XP/7/8/10/11. Screen Size: 11.6in. Input Voltage: AC 100-240V 50/60Hz. Input Voltage: DC 12V. The optical system lens is provided by Navitar, and other accessories such as Stands, camera and light source are provided by our company.
MZ02130105 Video Zoom Microscope
Optical System Specifications
Optical System | Infinite |
System Optical Magnification | 0.58-7X |
Expandable System Optical Magnification (Optional Parts Required) | 0.07-46.2X |
Total Magnification | 0.58-7X |
Standard Objective | 1X Built-in Objective |
Standard Coupler | 1X |
System Working Distance | 86mm |
Expandable System Working Distance | 37-341mm |
Zoom Lens Body
Navitar 12X Zoom, 12 mm Fine Focus | |
Body Optical System | Infinite |
Body Magnification | 0.58-7X |
Zoom Range | 0.58-7X |
Zoom Ratio | 1:12 |
Zoom Operating Mode | With the Nosepiece |
Body Mounting Size for Stand | Dia. 45.3mm |
Body Mount Type for Coupler | Fastening Screw |
Body Mount Size for Coupler | Dia. 33.3mm |
Built-in Objective Magnification | 1X |
Objective Type | Achromatic Objective |
Objective Working Distance | 86mm |
Objective Screw Thread | 1.093-32T |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.49kg (1.08lbs) |
Post Stand
76mm Post Stand | |
Stand Type | Post Stand |
Holder Adapter Type | Dia. 76mm Scope Holder |
Vertical Post Height | 305mm |
Maximum Vertical Post Extended Length | 150mm |
Vertical Post Diameter | Dia. 32mm |
Base Type | Table Base |
Base Shape | Rectangle |
Base Mounting Size | M29x1.5-6h |
Base Dimensions | 320x305x16mm |
Focus Mode | Manual |
Focus Distance | 50mm |
Coarse Focus Distance per Rotation | 21mm |
Focusing Knob Tightness Adjustable | Tightness Adjustable |
Center Distance from Hole to Scope Holder | 150mm |
Surface Treatment | Plastic Spray Coating |
Material | Metal |
Color | White |
Net Weight | 3.25kg (7.17lbs) |
Dimensions | 320x305x474mm (12.598x12.008x18.661 in. ) |
Donut Adapter
76 mm Adapter Plate for 12X | |
Donut Adapter Type | Scope Mounting Converter |
Donut Adapter Size for Scope Mounting | Dia. 45.3mm |
Donut Adapter Size for Scope Holder | Dia. 76mm |
Donut Adapter Height | 30mm |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.18kg (0.40lbs) |
Applied Field | For Navitar 12X Zoom |
Microscope Plate
95x5mm Black White Plate | |
Plate Type | Black White Plate |
Plate Size | Dia. 95x5mm |
Material | Plastic (ABS) |
Color | Black, White |
Applied Field | For ST0201, ST0501, ST1901, ST0801, ST0802 Series Post Stand. ST0203, ST0204 ST0403 Series Track Stand |
Spot Light
5W LED Dual Point Light | |
Post Hole Diameter of Focusing Rack | Dia. 32mm |
Light Source Type | LED Light |
Power Supply Adjustable | Light Adjustable |
Light Source Illuminance | 8000LUX |
Power Box Panel Meter Display | Pointer Panel Meter/Scale |
Power Box Cooling System | Heat Sink |
Power Box Dimensions | 103x58x32mm |
Output Power | 2.5Wx2 |
Input Voltage | AC 100-240V 50/60Hz |
Output Voltage | DC 12V |
Power Cord Connector Type | USA 2 Pins |
Power Cable Length | 1.5m |
Parts Certification | Power Supply with CE Certification |
Material | Metal |
Color | Black |
Net Weight | 0.46kg (1.01lbs) |
Applied Field | For ST0201, ST0501, ST0701, ST0801, ST1901 Series Post Stand |
Coupler/C-mount Adapter
1X Coupler | |
Coupler Mount Type for Body | Fastening Screw |
Coupler Mount Size for Body | Dia. 33.3mm |
Coupler Magnification | 1X |
For Camera Sensor Size | Under 1 in. |
Surface Treatment | Electroplating Black |
Material | Metal |
Color | Black |
Net Weight | 0.15kg (0.33lbs) |
Applied Field | For Zoom 6000 series and 12x zoom systems with camera sensor 20mm or smaller |
Camera Conversion Adapter
Navitar Machine Vision 1-6010 C-mount Coupler | |
Material | Metal |
Color | Black |
Net Weight | 0.017kg (0.037lbs) |
Applied Field | For Zoom 6000 series and 12x zoom systems with camera sensor 20mm or smaller |
LCD Display Digital Camera
11.6 in. LCD Display Digital Camera | |
Image Sensor | CMOS |
Image Sensor Size | 1/2.86 in. |
Image Sensor Diagonal size | 6.592mm (0.260 in. ) |
Camera Maximum Pixels | 2.0 Megapixels |
Camera Resolution | 1920x1080 |
Camera Lens Mount | CS-Mount |
Transmission Frame Rate | 36fps |
White Balance | Manual/Auto |
Gain Control | Adjustable |
Exposure Control | Manual/Auto |
Camera Crosshairs | Cross Line |
Number of Crosshairs | 4 Movable Crosshairs |
Line Color | User Defined |
Capture Function | Yes |
Image Capture Output Format | TIFF/JPG/BMP/PNG |
Video Output Format | MP4 |
System Requirement | Windows XP/7/8/10/11 |
Driver Installation | Driver free |
Camera Housing Material | Plastic |
Camera Housing Size | 40x40x58mm |
Camera Housing Color | Black |
Max. Supported Memory Card | 32G |
Screen Size | 11.6in |
Screen Aspect Ratio | 16:9 |
Monitor Signal Format | NTSC/PAL Auto-Switch |
Monitor Max. Resolution | 1920x1080 |
Input Voltage | DC 12V |
Net Weight | 0.65kg (1.43lbs) |
Dimensions | 280x200x55mm (11.024x7.874x2.165 in. ) |
Camera Accessories
11.6 in. LCD Display Digital Camera | |
C/CS Spacer | 5mm |
Mouse Operation | Yes |
Memory Type | SD |
Memory Capacity | 4G |
Other Parameters
Surface Treatment | Spray Paint |
Material | Metal |
Color | Black, White |
Net Weight | 5.35kg (11.79lbs) |
Dimensions | 320x305x474mm (12.598x12.008x18.661 in. ) |
Notes | The optical system lens is provided by Navitar, and other accessories such as Stands, camera and light source are provided by our company |
Series
Navitar 12X Zoom | MZ02130105 |
Technical Info
Instructions
Video Zoom LensClose Λ
Video zoom lens, refers to microscope that has only one set of imaging optical paths. It can be considered as a set of dual optical path stereo microscopes. The magnification and multiple range of video zoom lens are usually the same as those of a stereo microscope, but because the objective lens is one, its optical imaging is flat, not stereoscopic. It has been observed that as most of the parametric features are close to stereo microscopes, video zoom lens is then classified as stereo microscope. In fact, it lacks the most important "stereoscopic" imaging features. Compared with other compound microscopes such as biological metallurgical microscopes, the total optical magnification of video zoom lens is generally below 40X, which is the coverage of low magnification range that these microscopes do not have. Most of the video continuous zoom lens is to observe the electronic image, not through the eyepiece, but through the camera. Video zoom lens can have relatively more objective lens and photographic eyepiece multiples for selection. At the same time, video zoom lens can also be designed as parallel light so as to add even more configuration accessories, such as observation eyepieces, aperture diaphragms, coaxial illumination light sources, reticles, and nosepieces that can change the viewing angle and direction, etc. Regarding accessories of video zoom lens such as the stands and light source etc., generally, all accessories of stereo microscope can be used. Therefore, video zoom lens combination is flexible, compact, with strong adaptability and low cost, suitable for use in industry, especially extensively used in the electronics industry. |
InfiniteClose Λ
Microscopes and components have two types of optical path design structures. One type is finite optical structural design, in which light passing through the objective lens is directed at the intermediate image plane (located in the front focal plane of the eyepiece) and converges at that point. The finite structure is an integrated design, with a compact structure, and it is a kind of economical microscope. Another type is infinite optical structural design, in which the light between the tube lens after passing the objective lens becomes "parallel light". Within this distance, various kinds of optical components necessary such as beam splitters or optical filters call be added, and at the same time, this kind of design has better imaging results. As the design is modular, it is also called modular microscope. The modular structure facilitates the addition of different imaging and lighting accessories in the middle of the system as required. The main components of infinite and finite, especially objective lens, are usually not interchangeable for use, and even if they can be imaged, the image quality will also have some defects. The separative two-objective lens structure of the dual-light path of stereo microscope (SZ/FS microscope) is also known as Greenough. Parallel optical microscope uses a parallel structure (PZ microscope), which is different from the separative two-object lens structure, and because its objective lens is one and the same, it is therefore also known as the CMO common main objective. |
System Optical MagnificationClose Λ
The magnification of the objective lens refers to the lateral magnification, it is the ratio of the image to the real size after the original image is magnified by the instrument. This multiple refers to the length or width of the magnified object. System optical magnification is the product of the eyepiece and the objective lens (objective lens zoom set) of the optical imaging part within the system. Optical magnification = eyepiece multiple X objective lens/objective lens set The maximum optical magnification of the microscope depends on the wavelength of the light to which the object is illuminated. The size of the object that can be observed must be greater than the wavelength of the light. Otherwise, the light cannot be reflected or transmitted, or recognized by the human eye. The shortest wavelength of ultraviolet light is 0.2 microns, so the resolution of the optical microscope in the visible range does not exceed 0.2 microns, or 200 nanometers. This size is converted to the magnification of the microscope, and it is the optical magnification of 2000X. Usually, the compound microscope can achieve 100X objective lens, the eyepiece is 20X, and the magnification can reach 2000X. If it is bigger, it will be called "invalid magnification", that is, the image is large, but the resolution is no longer increased, and no more details and information can be seen. |
Total MagnificationClose Λ
Total magnification is the magnification of the observed object finally obtained by the instrument. This magnification is often the product of the optical magnification and the electronic magnification. When it is only optically magnified, the total magnification will be the optical magnification. Total magnification = optical magnification X electronic magnification Total magnification = (objective X photo eyepiece) X (display size / camera sensor target ) |
System Working DistanceClose Λ
Working distance, also referred to as WD, is usually the vertical distance from the foremost surface end of the objective lens of the microscope to the surface of the observed object. When the working distance or WD is large, the space between the objective lens and the object to be observed is also large, which can facilitate operation and the use of corresponding lighting conditions. In general, system working distance is the working distance of the objective lens. When some other equipment, such as a light source etc., is used below the objective lens, the working distance (i.e., space) will become smaller. Working distance or WD is related to the design of the working distance of the objective lens. Generally speaking, the bigger the magnification of the objective lens, the smaller the working distance. Conversely, the smaller the magnification of the objective lens, the greater the working distance. When it is necessary to change the working distance requirement, it can be realized by changing the magnification of the objective lens. |
Zoom RangeClose Λ
Zoom in zoom microscope means to obtain different magnifications by changing the focal length of the objective lens within a certain range through adjustment of some lens or lens set while not changing the position of the object plane (that is, the plane of the point of the observed object perpendicular to the optical axis) and the image plane (that is, the plane of the image imaging focus and perpendicular to the optical axis) of the microscope. Zoom range refers to the range in which the magnification is from low to high. In the zoom range of the microscope, there is no need to adjust the microscope knob for focusing, and ensure that the image is always clear during the entire zoom process. The larger the zoom range, the stronger the adaptability of the range for microscope observation, but the image effects at both ends of the low and high magnification should be taken into consideration, the larger the zoom range, the more difficult to design and manufacture, and the higher the cost will be. |
Zoom RatioClose Λ
Zoom ratio is the ratio of the maximum magnification / the minimum magnification. Expressed as 1: (ratio of maximum magnification / minimum magnification). If the maximum magnification is 4.5X, the minimum magnification is 0.7X, then the zoom ratio = 4.5 / 0.7 = 6.4, the zoom ratio will be 1:6.4. Zoom ratio is obtained by the intermediate magnification group of the microscope. When the magnification is increased or decreased by using other objective lenses, the zoom ratio does not change accordingly. |
With the NosepieceClose Λ
When the microscope body changes the magnification, it is realized by adjusting the zoom drum or nosepiece. Generally, the lower case of the microscope is used as the zoom drum or nosepiece. When magnification conversion is required, it can be realized by turning the zoom drum or nosepiece. |
Built-in Objective MagnificationClose Λ
The objective of a stereo microscope is mostly built-in objective, which is usually mounted in the microscope body, and it is one or a set of lenses closest to the object to be observed. When not marked, the built-in objective is 1X. |
Objective TypeClose Λ
In the case of polychromatic light imaging, the aberration caused by the light of different wavelengths becomes chromatic aberration. Achromatic aberration is to correct the axial chromatic aberration to the two line spectra (C line, F line); apochromatic aberration is to correct the three line spectra (C line, D line, F line). The objective is designed according to the achromaticity and the flatness of the field of view. It can be divided into the following categories. Achromatic objective: achromatic objective has corrected the chromatic aberration, spherical aberration, and comatic aberration. The chromatic portion of the achromatic objective has corrected only red and green, so when using achromatic objective, yellow-green filters are often used to reduce aberrations. The aberration of the achromatic objective in the center of the field of view is basically corrected, and as its structure is simple, the cost is low, it is commonly used in a microscope. Semi-plan achromatic objective: in addition to meeting the requirements of achromatic objective, the curvature of field and astigmatism of the objective should also be properly corrected. Plan achromatic objective: in addition to meeting the requirements of achromatic objectives, the curvature of field and astigmatism of the objective should also be well corrected. The plan objective provides a very good correction of the image plane curvature in the field of view of the objective, making the entire field of view smooth and easy to observe, especially in measurement it has achieved a more accurate effect. Plan semi-apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to well correct the secondary spectrum of the objective (the axial chromatic aberration of the C line and the F line). Plan apochromatic objective: in addition to meeting the requirements of plan achromatic objective, it is necessary to very well correct the tertiary spectrum of the objective (the axial chromatic aberration of the C line, the D line and the F line) and spherochromatic aberration. The apochromatic aberration has corrected the chromatic aberration in the range of red, green and purple (basically the entire visible light), and there is basically no limitation on the imaging effect of the light source. Generally, the apochromatic aberration is used in a high magnification objective. |
Objective Working DistanceClose Λ
The objective working distance is the vertical distance from the foremost surface end of the objective of the microscope to the object surface to be observed. Generally, the greater the magnification, the higher the resolution of the objective, and the smaller the working distance, the smaller the field of view. Conversely, the smaller the magnification, the lower the resolution of the objective, and the greater the working distance, and greater the field of view. High-magnification objectives (such as 80X and 100X objectives) have a very short working distance. Be very careful when focusing for observation. Generally, it is after the objective is in position, the axial limit protection is locked, then the objective is moved away from the direction of the observed object. The relatively greater working distance leaves a relatively large space between the objective and the object to be observed. It is suitable for under microscope operation, and it is also easier to use more illumination methods. The defect is that it may reduce the numerical aperture of the objective, thereby reducing the resolution. |
Objective Screw ThreadClose Λ
For microscopes of different manufacturers and different models, the thread size of their objectives may also be different. In general, the objective threads are available in two standard sizes, allowing similar objectives between different manufacturers to be used interchangeably. One is the British system: RMS type objective thread: 4/5in X 1/36in, One is metric: M25 X 0.75mm thread. |
Post StandClose Λ
Post stand generally has relatively tall post. When the focus is adjusted, the focusing mechanism can slide up and down the post, the microscope is thus placed in an approximately focused position, and then the focusing mechanism makes fine and accurate adjustment. This kind of stand can move quickly, and is suitable for viewing objects with a higher height and bigger volume. After the microscope is mounted, the microscope imaging center needs to be aligned with the center of the platen. The focusing mechanism button on the post must be tightened to lock the guard ring device, and the microscope should be prevented from loosening and shaking when working. When it is necessary to adjust the height, hold the microscope and the focusing mechanism with one hand, then release the knob, adjust it to the proper position, lock the knob, then top the guard ring to the lower position of the focusing mechanism, and lock it tight. In particular, avoid accidental dropping of the microscope due to gravity, thereby damaging the microscope and the objects below. |
Dia. 76mm Scope HolderClose Λ
The 76mm stand scope holder is the most popular microscope body adapter size, suitable for stereo microscopes produced by most manufacturers. Place the microscope body in a 76mm scope holder, tighten with screws to avoid shaking when the microscope is in use. Because this stand scope holder is very common, some special-sized microscopes can also borrow and use this stand, but only need a specific adapter to connect the microscope body with a diameter of less than 76mm. |
Focusing Knob Tightness AdjustableClose Λ
Different microscope bodies, different human operations, and different requirements for observation and operation, all require adjustment of the pre-tightening force of the stand that support microscope body. Facing the stand just right, use both hands to reverse the force to adjust the tightness. (face the knob of one side just right, clockwise is to tighten, counterclockwise is to loosen) In general, after long-time use, the knob will be loose, and adjustment is necessary. |
Donut AdapterClose Λ
Donut adapter is an adapter used to convert the scope holder of the microscope and the size of the microscope body. For different manufacturers and different types of microscopes, as well as different stands, their adapters are often different and not interchangeable. This type of donut adapter can be used to connect different microscope stands and microscope bodies, which is very convenient for interchange of different manufacturers and microscope models. It is usually to use this adapter cable to fix it to the body of the microscope, which is equivalent to changing the fixed diameter of the microscope, and then placing it on the microscope stand. |
Microscope PlateClose Λ
According to different objects to be observed, the appropriate platen should be selected. The microscope plate materials include black and white, black and white finish; transparent glass, frosted glass, metal, etc. Standard stands are generally configured with a suitable microscope plate, but different plates may need to be purchased separately. Black and white microscope plate are made of general plastics, and the different backgrounds in black and white make the object more prominent. Finish microscope plate eliminates reflections during observation. Transparent glass plate is used when observing transparent or translucent objects, and the use of transmitted light source is to make the light penetrate the object to be observed as much as possible. Finish glass plate, with its rough glass surface, can make the transmitted light more uniform and create a diffusing effect, avoiding exposure of the light shadow of the filament directly onto to the observed object. Metal plate, relatively more solid, is more suitable when it is necessary to operate and cut. Microscope plate is generally round shaped, on one side of the base there is a spring clip. When installing, align the plate with the clamp and push it in, and then press down the other end, so that the plate is smoothly embedded in to the circular card slot of the bottom plate. When removing, grab the other end of the clip, push and lift up the plate. |
Spot LightClose Λ
Spot light source of microscopic illumination, usually refers to the “spot” or dot shaped light source, converged at the light exits after the power source emits light. It is usually used for “oblique illumination”, and can be angled with the optical axis of the microscope, very suitable for illumination detecting the cracks, pipe walls etc. of some objects with “height and depth”. When focusing is required, a lens can be added in front of the spot light source for light concentration, making the illumination more uniform. The focal length of the spot light source usually falls directly on the focal plane of the lens/surface of the reflector in order to achieve maximum brightness and illumination effect. In spot light source, there is a kind of dual point light. In optical fiber illumination, it is called double pipe light guide, which can adjust the angle and brightness freely, so as to adjust the light and shadow of the illumination to reach the optimal position. There are also spot light source, which are split into multiple points of illumination on a ring to become a multi-point illumination source, it is a compromise between ring illumination and spot illumination. |
Light AdjustableClose Λ
The brightness of the light source adjustable is very important in the imaging of the microscope. Since the difference of the numerical aperture of the objective lens of high magnification and low magnification is very big, more incident light is needed to achieve a much better resolution when using a high magnification objective lens. Therefore, when observing through a high magnification objective lens, the brightness required is high; when observing through a low magnification objective lens, the brightness required is low. When observing different objects, or feature points of the same object at different positions, the brightness needs are also different; including the difference of background light or reflection within the field of view of observation, it has a great influence on the effect of observing the object, and therefore one needs to adjust the brightness of the light source according to each object to be observed. In the light source capable of providing continuous spectrum, such as a halogen lamp, the brightness adjustment of the light not only adjusts the brightness and intensity of the light, but also changes the spectrum emitted by the light source. When the light source is dark, there are many components of red light, and when the brightness is high, there are more blue spectrum. If the required light is strong and the spectrum needs to be changed, the light can be kept at a brighter intensity, which is solved by adjusting the spectrum by adding a color filter. Take note of the dimming button on the light source, after the On/Off switch is turned on, normally clockwise is to brighten, and counterclockwise is to darken. If it is adjusted to the lowest brightness, the light source should normally be lit. If the naked eye still can't see the object being illuminated brightly, you need to adjust the brightness knob to a much bigger position. Generally, there is scale marking on the dimming knob, which is an imaginary number representing the percentage of brightness, or an electronic digital display, giving the brightness of the light source under the same conditions a marking. |
Coupler/C-mount AdapterClose Λ
Coupler/C-mount adapter is an adapter commonly used for connection between the C-adapter camera (industrial camera) and a microscope. |
Coupler MagnificationClose Λ
Coupler magnification refers to the line field magnification of the coupler/C-mount-adapter. With different magnifications of the adapter lens, images of different magnifications and fields of view can be obtained. The size of the image field of view is related to the sensor size and the coupler/C-mount-adapter magnification. Camera image field of view (mm) = sensor diagonal / coupler/C-mount-adapter magnification. For example: 1/2 inch sensor size, 0.5X coupler/C-mount-adapter coupler, field of view FOV (mm) = 8mm / 0.5 = 16mm. The field of view number of the microscope 10X eyepiece is usually designed to be 18, 20, 22, 23mm, less than 1 inch (25.4mm). Since most commonly used camera sensor sizes are 1/3 and 1/2 inches, this makes the image field of view on the display always smaller than the field of view of the eyepiece for observation, and the visual perception becomes inconsistent when simultaneously viewed on both the eyepiece and the display. If it is changed to a 0.5X coupler/C-mount-adapter, the microscope image magnification is reduced by 1/2 and the field of view is doubled, then the image captured by the camera will be close to the range observed in the eyepiece. Some adapters are designed without a lens, and their optical magnification is considered 1X. |
For Camera Sensor SizeClose Λ
For the size of the lens field of view of the coupler/C-mount-adapter, in the design process, the size of the camera sensor imaging target should be considered. When the field of view of the lens is smaller than the target plane of the camera, “black border” and “dark corner” will appear. The general microscope coupler/C-mount adapters are generally designed for the 1/2" camera targets. When a camera of 2/3 or larger target is used, the “dark corner” phenomenon will appear in the field of view. Especially, at present, DSLR cameras generally use large target plane design (1 inch full field of view), when used for microscopic photographing, the general DSLR camera coupler/C-mount adapter will have “black border”. Generally, the “dark corner” that appears on the field of view is often that the center of the microscope and the camera are not aligned. Adjust the position of the screw on the camera adapter, or turn the camera adapter to adjust or change the effect. |
Camera Conversion AdapterClose Λ
For the model of microscopes of some manufacturers, when installing the camera and industrial camera, a convertible adapter is required to be installed on the trinocular head of the microscope. |
LCD Display Digital CameraClose Λ
LCD display digital camera is a combination of a digital camera and a display. |
CMOSClose Λ
CMOS, or complementary metal oxide semiconductor. Both CMOS and CCD sensors have their own respective advantages and disadvantages. As a kind of photoelectric conversion sensor, among the current cameras, CMOS is relatively more widely used. |
Image Sensor SizeClose Λ
The size of the CCD and CMOS image sensors is the size of the photosensitive device. The larger the area of the photosensitive device, the larger the CCD/CMOS area; the more photons are captured, the better the photographic performance; the higher the signal-to-noise ratio, the larger the photosensitive area, and the better the imaging effect. The size of the image sensor needs to match the size of the microscope's photographic eyepiece; otherwise, black borders or dark corners will appear within the field of view of observation. |
Camera Maximum PixelsClose Λ
The pixel is determined by the number of photosensitive elements on the photoelectric sensor of the camera, and one photosensitive element corresponds to one pixel. Therefore, the more photosensitive elements, the larger the number of pixels; the better the imaging quality of the camera, and the higher the corresponding cost. The pixel unit is one, for example, 1.3 million pixels means 1.3 million pixels points, expressed as 1.3MP (Megapixels). |
Camera ResolutionClose Λ
Resolution of the camera refers to the number of pixels accommodated within unit area of the image sensor of the camera. Image resolution is not represented by area, but by the number of pixels accommodated within the unit length of the rectangular side. The unit of length is generally represented by inch. |
Camera Lens MountClose Λ
Industrial camera adapters are usually available in three types: 1. C-Mount: 1" diameter with 32 threads per inch, flange back intercept 17.5mm. 2. CS-Mount: 1" diameter with 32 threads per inch, flange back intercept 12.5mm. CS-Mount can be converted to a C-Mount through a 5mm spacer, C-mount industrial camera cannot use the CS-mount lens. 3. F-Mount: F-mount is the adapter standard of Nikon lens, also known as Nikon mouth, usually used on large-sized sensor cameras, the flange back intercept is 46.5mm. |
Transmission Frame RateClose Λ
Frame rate is the number of output of frames per second, FPS or Hertz for short. The number of frames per second (fps) or frame rate represents the number of times the graphics process is updated per second. Due to the physiological structure of the human eye, when the frame rate of the picture is higher than 16fps, it is considered to be coherent, and high frame rate can make the image frame more smooth and realistic. Some industrial inspection camera applications also require a much higher frame rate to meet certain specific needs. The higher the resolution of the camera, the lower the frame rate. Therefore, this should be taken into consideration during their selection. When needing to take static or still images, you often need a large resolution. When needing to operate under the microscope, or shooting dynamic images, frame rate should be first considered. In order to solve this problem, the general industrial camera design is to display the maximum frame rate and relatively smaller resolution when viewing; when shooting, the maximum resolution should be used; and some cameras need to set in advance different shooting resolutions when taking pictures, so as to achieve the best results. |
White BalanceClose Λ
White balance is an indicator that describes the precision of white color generated in the image when the three primary colors of red, green and blue are mixed, which accurately reflects the color condition of the subject. There are manual white balance and automatic white balance. White balance of the camera is to "restore white objects to white color under any light source." The chromatic aberration phenomenon occurred under different light sources is compensated by enhancing the corresponding complementary color. Automatic white balance can generally be used, but under certain conditions if the hue is not ideal, options of other white balance may be selected. |
Camera CrosshairsClose Λ
Camera crosshairs refers to the preset reference line within the camera, which is used to calibrate various positions on the display. The most commonly used is the crosshair, which is to determine the center position of the camera image, and it is very important in measurement. Some cameras also have multiple crosshairs that can be moved to quickly detect and calibrate the size of the object being viewed. Some crosshairs can also change color to adapt to different viewing backgrounds. |
PackagingClose Λ
After unpacking, carefully inspect the various random accessories and parts in the package to avoid omissions. In order to save space and ensure safety of components, some components will be placed outside the inner packaging box, so be careful of their inspection. For special packaging, it is generally after opening the box, all packaging boxes, protective foam, plastic bags should be kept for a period of time. If there is a problem during the return period, you can return or exchange the original. After the return period (usually 10-30 days, according to the manufacturer’s Instruction of Terms of Service), these packaging boxes may be disposed of if there is no problem. |
Optical Data
Video Microscope Optical Data Sheet | ||
P/N | Objective | Coupler |
Navitar-1-6015 (1X) | ||
Magnification | ||
Navitar-1-50486 | 1X | 0.58-7X |
1. Magnification=Objective Optical Magnification * Body Magnification * Coupler Magnification |
Camera Image Sensor Specifications | |||
No. | Camera Image Sensor Size | Camera image Sensor Diagonal | |
(mm) | (inch) | ||
1 | 1/4 in. | 4mm | 0.157" |
2 | 1/3 in. | 6mm | 0.236" |
3 | 1/2.8 in. | 6.592mm | 0.260" |
4 | 1/2.86 in. | 6.592mm | 0.260" |
5 | 1/2.7 in. | 6.718mm | 0.264" |
6 | 1/2.5 in. | 7.182mm | 0.283" |
7 | 1/2.3 in. | 7.7mm | 0.303" |
8 | 1/2.33 in. | 7.7mm | 0.303" |
9 | 1/2 in. | 8mm | 0.315" |
10 | 1/1.9 in. | 8.933mm | 0.352" |
11 | 1/1.8 in. | 8.933mm | 0.352" |
12 | 1/1.7 in. | 9.5mm | 0.374" |
13 | 2/3 in. | 11mm | 0.433" |
14 | 1/1.2 in. | 12.778mm | 0.503" |
15 | 1 in. | 16mm | 0.629" |
16 | 1/1.1 in. | 17.475mm | 0.688" |
Digital Magnification Data Sheet | ||
Image Sensor Size | Image Sensor Diagonal size | Monitor |
Screen Size (11.6in) | ||
Digital Zoom Function | ||
1/2.86 in. | 6.592mm | 44.7 |
1. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size |
Microscope Optical and Digital Magnifications Data Sheet | ||||||||||
Objective | Coupler | Camera | Monitor | Video Microscope Optical Magnifications | Digital Zoom Function | Total Magnification | Field of View (mm) | |||
PN | Magnification | PN | Magnification | Image Sensor Size | Image Sensor Diagonal size | Screen Size | ||||
Navitar-1-50486 | 1X | Navitar-1-6015 | 1X | 1/2.86 in. | 6.592mm | 11.6in | 0.58-7X | 44.7 | 25.93-312.9X | 0.94-11.37mm |
1. Video Microscope Optical Magnifications=Objective Optical Magnification * Body Magnification * Coupler Magnification | ||||||||||
2. Digital Zoom Function= (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
3. Total Magnification= Video Microscope Optical Magnifications * (Screen Size * 25.4) / Image Sensor Diagonal size | ||||||||||
4. Field of View (mm)= Image Sensor Diagonal size / Video Microscope Optical Magnifications |
Contains | |||||||||||||||||||||||||
Parts Including | |||||||||||||||||||||||||
| |||||||||||||||||||||||||
Desiccant Bag | 1 Bag |
Packing | |
Packaging Type | Carton Packaging |
Packaging Material | Corrugated Carton |
Packaging Dimensions(1) | 38x36x19cm (14.961x14.173x7.480″) |
Packaging Dimensions(2) | 29x19.5x14.5cm (11.417x7.677x5.709″) |
Packaging Dimensions(3) | 15.2x15.2x15.2cm (6x6x6″) |
Packaging Dimensions(4) | 24x17x5cm (9.448x6.692x1.968″) |
Packaging Dimensions(5) | 33x24.5x9cm (12.992x9.646x3.543″) |
Inner Packing Material | Plastic Bag |
Ancillary Packaging Materials | Expanded Polystyrene |
Gross Weight | 7.35kg (16.20lbs) |
Minimum Packaging Quantity | 1pc |
Transportation Carton | Carton Packaging |
Transportation Carton Material | Corrugated Carton |
Transportation Carton Dimensions(1) | 38x36x19cm (14.961x14.173x7.480″) |
Transportation Carton Dimensions(2) | 29x19.5x14.5cm (11.417x7.677x5.709″) |
Transportation Carton Dimensions(3) | 15.2x15.2x15.2cm (6x6x6″) |
Transportation Carton Dimensions(4) | 24x17x5cm (9.448x6.692x1.968″) |
Transportation Carton Dimensions(5) | 33x24.5x9cm (12.992x9.646x3.543″) |
Total Gross Weight of Transportation(kilogram) | 7.35 |
Total Gross Weight of Transportation(pound) | 16.20 |
Quantity of One Transportation Carton | 5pc |